Spaces:
Runtime error
Runtime error
File size: 11,994 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Generates example dataset for post-training quantization.
Example command line to run the script:
```shell
python3 quantize_movinet.py \
--saved_model_dir=${SAVED_MODEL_DIR} \
--saved_model_with_states_dir=${SAVED_MODEL_WITH_STATES_DIR} \
--output_dataset_dir=${OUTPUT_DATASET_DIR} \
--output_tflite=${OUTPUT_TFLITE} \
--quantization_mode='int_float_fallback' \
--save_dataset_to_tfrecords=True
```
"""
import functools
from typing import Any, Callable, Mapping, Optional
from absl import app
from absl import flags
from absl import logging
import numpy as np
import tensorflow.compat.v2 as tf
import tensorflow_hub as hub
from official.vision.configs import video_classification as video_classification_configs
from official.vision.tasks import video_classification
tf.enable_v2_behavior()
FLAGS = flags.FLAGS
flags.DEFINE_string(
'saved_model_dir', None, 'The saved_model directory.')
flags.DEFINE_string(
'saved_model_with_states_dir', None,
'The directory to the saved_model with state signature. '
'The saved_model_with_states is needed in order to get the initial state '
'shape and dtype while saved_model is used for the quantization.')
flags.DEFINE_string(
'output_tflite', '/tmp/output.tflite',
'The output tflite file path.')
flags.DEFINE_integer(
'temporal_stride', 5,
'Temporal stride used to generate input videos.')
flags.DEFINE_integer(
'num_frames', 50, 'Input videos number of frames.')
flags.DEFINE_integer(
'image_size', 172, 'Input videos frame size.')
flags.DEFINE_string(
'quantization_mode', None,
'The quantization mode. Can be one of "float16", "int8",'
'"int_float_fallback" or None.')
flags.DEFINE_integer(
'num_calibration_videos', 100,
'Number of videos to run to generate example datasets.')
flags.DEFINE_integer(
'num_samples_per_video', 3,
'Number of sample draw from one single video.')
flags.DEFINE_boolean(
'save_dataset_to_tfrecords', False,
'Whether to save representative dataset to the disk.')
flags.DEFINE_string(
'output_dataset_dir', '/tmp/representative_dataset/',
'The directory to store exported tfrecords.')
flags.DEFINE_integer(
'max_saved_files', 100,
'The maximum number of tfrecord files to save.')
def _bytes_feature(value):
"""Returns a bytes_list from a string / byte."""
if isinstance(value, type(tf.constant(0))):
value = value.numpy() # BytesList won't unpack string from an EagerTensor.
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _float_feature(value):
"""Returns a float_list from a float / double."""
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def _int64_feature(value):
"""Returns an int64_list from a bool / enum / int / uint."""
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _build_tf_example(feature):
return tf.train.Example(
features=tf.train.Features(feature=feature)).SerializeToString()
def save_to_tfrecord(input_frame: tf.Tensor,
input_states: Mapping[str, tf.Tensor],
frame_index: int,
predictions: tf.Tensor,
output_states: Mapping[str, tf.Tensor],
groundtruth_label_id: tf.Tensor,
output_dataset_dir: str,
file_index: int):
"""Save results to tfrecord."""
features = {}
features['frame_id'] = _int64_feature([frame_index])
features['groundtruth_label'] = _int64_feature(
groundtruth_label_id.numpy().flatten().tolist())
features['predictions'] = _float_feature(
predictions.numpy().flatten().tolist())
image_string = tf.io.encode_png(
tf.squeeze(tf.cast(input_frame * 255., tf.uint8), axis=[0, 1]))
features['image'] = _bytes_feature(image_string.numpy())
# Input/Output states at time T
for k, v in output_states.items():
dtype = v[0].dtype
if dtype == tf.int32:
features['input/' + k] = _int64_feature(
input_states[k].numpy().flatten().tolist())
features['output/' + k] = _int64_feature(
output_states[k].numpy().flatten().tolist())
elif dtype == tf.float32:
features['input/' + k] = _float_feature(
input_states[k].numpy().flatten().tolist())
features['output/' + k] = _float_feature(
output_states[k].numpy().flatten().tolist())
else:
raise ValueError(f'Unrecongized dtype: {dtype}')
tfe = _build_tf_example(features)
record_file = '{}/movinet_stream_{:06d}.tfrecords'.format(
output_dataset_dir, file_index)
logging.info('Saving to %s.', record_file)
with tf.io.TFRecordWriter(record_file) as writer:
writer.write(tfe)
def get_dataset() -> tf.data.Dataset:
"""Gets dataset source."""
config = video_classification_configs.video_classification_kinetics600()
temporal_stride = FLAGS.temporal_stride
num_frames = FLAGS.num_frames
image_size = FLAGS.image_size
feature_shape = (num_frames, image_size, image_size, 3)
config.task.validation_data.global_batch_size = 1
config.task.validation_data.feature_shape = feature_shape
config.task.validation_data.temporal_stride = temporal_stride
config.task.train_data.min_image_size = int(1.125 * image_size)
config.task.validation_data.dtype = 'float32'
config.task.validation_data.drop_remainder = False
task = video_classification.VideoClassificationTask(config.task)
valid_dataset = task.build_inputs(config.task.validation_data)
valid_dataset = valid_dataset.map(lambda x, y: (x['image'], y))
valid_dataset = valid_dataset.prefetch(32)
return valid_dataset
def stateful_representative_dataset_generator(
model: tf_keras.Model,
dataset_iter: Any,
init_states: Mapping[str, tf.Tensor],
save_dataset_to_tfrecords: bool = False,
max_saved_files: int = 100,
output_dataset_dir: Optional[str] = None,
num_samples_per_video: int = 3,
num_calibration_videos: int = 100):
"""Generates sample input data with states.
Args:
model: the inference keras model.
dataset_iter: the dataset source.
init_states: the initial states for the model.
save_dataset_to_tfrecords: whether to save the representative dataset to
tfrecords on disk.
max_saved_files: the max number of saved tfrecords files.
output_dataset_dir: the directory to store the saved tfrecords.
num_samples_per_video: number of randomly sampled frames per video.
num_calibration_videos: number of calibration videos to run.
Yields:
A dictionary of model inputs.
"""
counter = 0
for i in range(num_calibration_videos):
if i % 100 == 0:
logging.info('Reading representative dateset id %d.', i)
example_input, example_label = next(dataset_iter)
groundtruth_label_id = tf.argmax(example_label, axis=-1)
input_states = init_states
# split video into frames along the temporal dimension.
frames = tf.split(example_input, example_input.shape[1], axis=1)
random_indices = np.random.randint(
low=1, high=len(frames), size=num_samples_per_video)
# always include the first frame
random_indices[0] = 0
random_indices = set(random_indices)
for frame_index, frame in enumerate(frames):
predictions, output_states = model({'image': frame, **input_states})
if frame_index in random_indices:
if save_dataset_to_tfrecords and counter < max_saved_files:
save_to_tfrecord(
input_frame=frame,
input_states=input_states,
frame_index=frame_index,
predictions=predictions,
output_states=output_states,
groundtruth_label_id=groundtruth_label_id,
output_dataset_dir=output_dataset_dir,
file_index=counter)
yield {'image': frame, **input_states}
counter += 1
# update states for the next inference step
input_states = output_states
def get_tflite_converter(
saved_model_dir: str,
quantization_mode: str,
representative_dataset: Optional[Callable[..., Any]] = None
) -> tf.lite.TFLiteConverter:
"""Gets tflite converter."""
converter = tf.lite.TFLiteConverter.from_saved_model(
saved_model_dir=saved_model_dir)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
if quantization_mode == 'float16':
logging.info('Using float16 quantization.')
converter.target_spec.supported_types = [tf.float16]
elif quantization_mode == 'int8':
logging.info('Using full interger quantization.')
converter.representative_dataset = representative_dataset
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.int8
converter.inference_output_type = tf.int8
elif quantization_mode == 'int_float_fallback':
logging.info('Using interger quantization with float-point fallback.')
converter.representative_dataset = representative_dataset
else:
logging.info('Using dynamic range quantization.')
return converter
def quantize_movinet(dataset_fn):
"""Quantizes Movinet."""
valid_dataset = dataset_fn()
dataset_iter = iter(valid_dataset)
# Load model
encoder = hub.KerasLayer(FLAGS.saved_model_with_states_dir, trainable=False)
inputs = tf_keras.layers.Input(
shape=[1, FLAGS.image_size, FLAGS.image_size, 3],
dtype=tf.float32,
name='image')
# Define the state inputs, which is a dict that maps state names to tensors.
init_states_fn = encoder.resolved_object.signatures['init_states']
state_shapes = {
name: ([s if s > 0 else None for s in state.shape], state.dtype)
for name, state in init_states_fn(
tf.constant([1, 1, FLAGS.image_size, FLAGS.image_size, 3])).items()
}
states_input = {
name: tf_keras.Input(shape[1:], dtype=dtype, name=name)
for name, (shape, dtype) in state_shapes.items()
}
# The inputs to the model are the states and the video
inputs = {**states_input, 'image': inputs}
outputs = encoder(inputs)
model = tf_keras.Model(inputs, outputs, name='movinet_stream')
input_shape = tf.constant(
[1, FLAGS.num_frames, FLAGS.image_size, FLAGS.image_size, 3])
init_states = init_states_fn(input_shape)
# config representative_datset_fn
representative_dataset = functools.partial(
stateful_representative_dataset_generator,
model=model,
dataset_iter=dataset_iter,
init_states=init_states,
save_dataset_to_tfrecords=FLAGS.save_dataset_to_tfrecords,
max_saved_files=FLAGS.max_saved_files,
output_dataset_dir=FLAGS.output_dataset_dir,
num_samples_per_video=FLAGS.num_samples_per_video,
num_calibration_videos=FLAGS.num_calibration_videos)
converter = get_tflite_converter(
saved_model_dir=FLAGS.saved_model_dir,
quantization_mode=FLAGS.quantization_mode,
representative_dataset=representative_dataset)
logging.info('Converting...')
tflite_buffer = converter.convert()
return tflite_buffer
def main(_):
tflite_buffer = quantize_movinet(dataset_fn=get_dataset)
with open(FLAGS.output_tflite, 'wb') as f:
f.write(tflite_buffer)
logging.info('tflite model written to %s', FLAGS.output_tflite)
if __name__ == '__main__':
flags.mark_flag_as_required('saved_model_dir')
flags.mark_flag_as_required('saved_model_with_states_dir')
app.run(main)
|