Spaces:
Runtime error
Runtime error
File size: 10,037 Bytes
5672777 93528c6 5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Build Movinet for video classification.
Reference: https://arxiv.org/pdf/2103.11511.pdf
"""
from typing import Any, Dict, Mapping, Optional, Sequence, Tuple, Union
from absl import logging
import tensorflow as tf, tf_keras
from official.projects.movinet.configs import movinet as cfg
from official.projects.movinet.modeling import movinet_layers_a2_modified
from official.vision.modeling import backbones
from official.vision.modeling import factory_3d as model_factory
@tf_keras.utils.register_keras_serializable(package='Vision')
class MovinetClassifier(tf_keras.Model):
"""A video classification class builder."""
def __init__(
self,
backbone: tf_keras.Model,
num_classes: int,
encoder_dim: int = 768,
input_specs: Optional[Mapping[str, tf_keras.layers.InputSpec]] = None,
activation: str = 'swish',
dropout_rate: float = 0.1,
kernel_initializer: str = 'HeNormal',
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
output_states: bool = False,
**kwargs):
"""Movinet initialization function.
Args:
backbone: A 3d backbone network.
num_classes: Number of classes in classification task.
input_specs: Specs of the input tensor.
activation: name of the main activation function.
dropout_rate: Rate for dropout regularization.
kernel_initializer: Kernel initializer for the final dense layer.
kernel_regularizer: Kernel regularizer.
bias_regularizer: Bias regularizer.
output_states: if True, output intermediate states that can be used to run
the model in streaming mode. Inputting the output states of the
previous input clip with the current input clip will utilize a stream
buffer for streaming video.
**kwargs: Keyword arguments to be passed.
"""
if not input_specs:
input_specs = {
'image': tf_keras.layers.InputSpec(shape=[None, None, None, None, 3])
}
self._num_classes = num_classes
self._input_specs = input_specs
self._activation = activation
self._dropout_rate = dropout_rate
self._kernel_initializer = kernel_initializer
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
self._output_states = output_states
self._encoder_dim = encoder_dim
state_specs = None
if backbone.use_external_states:
state_specs = backbone.initial_state_specs(
input_shape=input_specs['image'].shape)
inputs, outputs, vid_embed = self._build_network(
backbone, input_specs, state_specs=state_specs)
super(MovinetClassifier, self).__init__(
inputs=inputs, outputs={'prediction':outputs, 'vid_embedding':vid_embed}, **kwargs)
# Move backbone after super() call so Keras is happy
self._backbone = backbone
def _build_backbone(
self,
backbone: tf_keras.Model,
input_specs: Mapping[str, tf_keras.layers.InputSpec],
state_specs: Optional[Mapping[str, tf_keras.layers.InputSpec]] = None,
) -> Tuple[Mapping[str, Any], Any, Any]:
"""Builds the backbone network and gets states and endpoints.
Args:
backbone: the model backbone.
input_specs: the model input spec to use.
state_specs: a dict of states such that, if any of the keys match for a
layer, will overwrite the contents of the buffer(s).
Returns:
inputs: a dict of input specs.
endpoints: a dict of model endpoints.
states: a dict of model states.
"""
state_specs = state_specs if state_specs is not None else {}
states = {
name: tf_keras.Input(shape=spec.shape[1:], dtype=spec.dtype, name=name)
for name, spec in state_specs.items()
}
image = tf_keras.Input(shape=input_specs['image'].shape[1:], name='image')
inputs = {**states, 'image': image}
if backbone.use_external_states:
before_states = states
endpoints, states = backbone(inputs)
after_states = states
new_states = set(after_states) - set(before_states)
if new_states:
raise ValueError(
'Expected input and output states to be the same. Got extra states '
'{}, expected {}'.format(new_states, set(before_states)))
mismatched_shapes = {}
for name in after_states:
before_shape = before_states[name].shape
after_shape = after_states[name].shape
if len(before_shape) != len(after_shape):
mismatched_shapes[name] = (before_shape, after_shape)
continue
for before, after in zip(before_shape, after_shape):
if before is not None and after is not None and before != after:
mismatched_shapes[name] = (before_shape, after_shape)
break
if mismatched_shapes:
raise ValueError(
'Got mismatched input and output state shapes: {}'.format(
mismatched_shapes))
else:
endpoints, states = backbone(inputs)
return inputs, endpoints, states
def _build_network(
self,
backbone: tf_keras.Model,
input_specs: Mapping[str, tf_keras.layers.InputSpec],
state_specs: Optional[Mapping[str, tf_keras.layers.InputSpec]] = None,
) -> Tuple[Mapping[str, tf_keras.Input], Union[Tuple[Mapping[ # pytype: disable=invalid-annotation # typed-keras
str, tf.Tensor], Mapping[str, tf.Tensor]], Mapping[str, tf.Tensor]]]:
"""Builds the model network.
Args:
backbone: the model backbone.
input_specs: the model input spec to use.
state_specs: a dict of states such that, if any of the keys match for a
layer, will overwrite the contents of the buffer(s).
Returns:
Inputs and outputs as a tuple. Inputs are expected to be a dict with
base input and states. Outputs are expected to be a dict of endpoints
and (optionally) output states.
"""
inputs, endpoints, states = self._build_backbone(
backbone=backbone, input_specs=input_specs, state_specs=state_specs)
x = endpoints['block4_layer6']
x, vid_embed = movinet_layers_a2_modified.ClassifierHead(
num_classes=self._num_classes,
encoder_dim=self._encoder_dim,
dropout_rate=self._dropout_rate,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
conv_type='conv',
activation=self._activation)(
x)
# outputs = (x, vid_embed) if self._output_states else (x, vid_embed)
return inputs, x, vid_embed
def initial_state_specs(
self, input_shape: Sequence[int]) -> Dict[str, tf_keras.layers.InputSpec]:
return self._backbone.initial_state_specs(input_shape=input_shape)
@tf.function
def init_states(self, input_shape: Sequence[int]) -> Dict[str, tf.Tensor]:
"""Returns initial states for the first call in steaming mode."""
return self._backbone.init_states(input_shape)
@property
def checkpoint_items(self) -> Dict[str, Any]:
"""Returns a dictionary of items to be additionally checkpointed."""
return dict(backbone=self.backbone)
@property
def backbone(self) -> tf_keras.Model:
"""Returns the backbone of the model."""
return self._backbone
def get_config(self):
config = {
'backbone': self._backbone,
'activation': self._activation,
'num_classes': self._num_classes,
'input_specs': self._input_specs,
'dropout_rate': self._dropout_rate,
'kernel_initializer': self._kernel_initializer,
'kernel_regularizer': self._kernel_regularizer,
'bias_regularizer': self._bias_regularizer,
'output_states': self._output_states,
}
return config
@classmethod
def from_config(cls, config, custom_objects=None):
# Each InputSpec may need to be deserialized
# This handles the case where we want to load a saved_model loaded with
# `tf_keras.models.load_model`
if config['input_specs']:
for name in config['input_specs']:
if isinstance(config['input_specs'][name], dict):
config['input_specs'][name] = tf_keras.layers.deserialize(
config['input_specs'][name])
return cls(**config)
@model_factory.register_model_builder('movinet')
def build_movinet_model(
input_specs: Mapping[str, tf_keras.layers.InputSpec],
model_config: cfg.MovinetModel,
num_classes: int,
encoder_dim: int = 768,
l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None):
"""Builds movinet model."""
logging.info('Building movinet model with num classes: %s', num_classes)
if l2_regularizer is not None:
logging.info('Building movinet model with regularizer: %s',
l2_regularizer.get_config())
input_specs_dict = {'image': input_specs}
backbone = backbones.factory.build_backbone(
input_specs=input_specs,
backbone_config=model_config.backbone,
norm_activation_config=model_config.norm_activation,
l2_regularizer=l2_regularizer)
model = MovinetClassifier(
backbone,
num_classes=num_classes,
encoder_dim=encoder_dim,
kernel_regularizer=l2_regularizer,
input_specs=input_specs_dict,
activation=model_config.activation,
dropout_rate=model_config.dropout_rate,
output_states=model_config.output_states)
return model
|