File size: 13,012 Bytes
e5a1544 107dab2 e5a1544 5f27df7 107dab2 5f27df7 4a53aae 2553966 b37a8e6 107dab2 e5a1544 107dab2 b37a8e6 107dab2 b37a8e6 e5a1544 107dab2 b37a8e6 4a53aae 107dab2 b37a8e6 107dab2 5f27df7 107dab2 2553966 107dab2 b37a8e6 107dab2 2553966 107dab2 2553966 4a53aae 107dab2 4a53aae 107dab2 b37a8e6 107dab2 4a53aae 107dab2 b37a8e6 107dab2 e5a1544 107dab2 e5a1544 5148899 565e309 dfc63b4 5148899 d33634b 5148899 565e309 5148899 dfc63b4 d33634b 5148899 dfc63b4 d33634b dfc63b4 5148899 e5a1544 107dab2 e5a1544 107dab2 f6a647b e5a1544 5148899 107dab2 f6a647b 5148899 107dab2 4a53aae 5148899 107dab2 4a53aae 5148899 107dab2 f6a647b 5148899 4a53aae 5148899 107dab2 5148899 107dab2 5148899 107dab2 565e309 5148899 e5a1544 5148899 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import gradio as gr
import cv2
import numpy as np
import torch
from PIL import Image
import mediapipe as mp
from transformers import (
AutoFeatureExtractor,
AutoModel,
AutoImageProcessor,
AutoModelForImageClassification,
AutoModelForSemanticSegmentation
)
# -----------------------------
# Configuration & Device Setup
# -----------------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DESIRED_SIZE = (640, 480)
# -----------------------------
# Initialize Mediapipe Face Detection
# -----------------------------
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
# -----------------------------
# Load New Models from Hugging Face
# -----------------------------
# 1. Facial Recognition & Identification (facebook/dino-vitb16)
facial_recognition_extractor = AutoFeatureExtractor.from_pretrained("facebook/dino-vitb16")
facial_recognition_model = AutoModel.from_pretrained("facebook/dino-vitb16")
facial_recognition_model.to(device)
facial_recognition_model.eval()
# Create a dummy database for demonstration (embeddings of dimension 768 assumed)
dummy_database = {
"Alice": torch.randn(768).to(device),
"Bob": torch.randn(768).to(device)
}
# 2. Emotion Detection (nateraw/facial-expression-recognition)
emotion_processor = AutoImageProcessor.from_pretrained("nateraw/facial-expression-recognition")
emotion_model = AutoModelForImageClassification.from_pretrained("nateraw/facial-expression-recognition")
emotion_model.to(device)
emotion_model.eval()
# 3. Age & Gender Prediction (oayu/age-gender-estimation)
age_gender_processor = AutoImageProcessor.from_pretrained("oayu/age-gender-estimation")
age_gender_model = AutoModelForImageClassification.from_pretrained("oayu/age-gender-estimation")
age_gender_model.to(device)
age_gender_model.eval()
# 4. Face Parsing (hila-chefer/face-parsing)
face_parsing_processor = AutoImageProcessor.from_pretrained("hila-chefer/face-parsing")
face_parsing_model = AutoModelForSemanticSegmentation.from_pretrained("hila-chefer/face-parsing")
face_parsing_model.to(device)
face_parsing_model.eval()
# 5. Deepfake Detection (microsoft/FaceForensics)
deepfake_processor = AutoImageProcessor.from_pretrained("microsoft/FaceForensics")
deepfake_model = AutoModelForImageClassification.from_pretrained("microsoft/FaceForensics")
deepfake_model.to(device)
deepfake_model.eval()
# -----------------------------
# Helper Functions for New Inferences
# -----------------------------
def compute_facial_recognition(image):
"""
Detects a face using MediaPipe, crops it, and computes its embedding with DINO-ViT.
Compares the embedding against a dummy database to "identify" the person.
"""
frame = np.array(image)
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
frame_resized = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb = cv2.cvtColor(frame_resized, cv2.COLOR_BGR2RGB)
face_results = face_detection.process(frame_rgb)
if face_results.detections:
detection = face_results.detections[0]
bbox = detection.location_data.relative_bounding_box
h, w, _ = frame_rgb.shape
x = int(bbox.xmin * w)
y = int(bbox.ymin * h)
box_w = int(bbox.width * w)
box_h = int(bbox.height * h)
face_crop = frame_rgb[y:y+box_h, x:x+box_w]
face_image = Image.fromarray(face_crop)
inputs = facial_recognition_extractor(face_image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = facial_recognition_model(**inputs)
# Use mean pooling over the last hidden state to get an embedding vector
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze()
# Compare against dummy database using cosine similarity
best_score = -1
best_name = "Unknown"
for name, db_emb in dummy_database.items():
cos_sim = torch.nn.functional.cosine_similarity(embeddings, db_emb, dim=0)
if cos_sim > best_score:
best_score = cos_sim
best_name = name
threshold = 0.7 # dummy threshold for identification
if best_score > threshold:
result = f"Identified as {best_name} (sim: {best_score:.2f})"
else:
result = f"No match found (best: {best_name}, sim: {best_score:.2f})"
return face_crop, result
else:
return frame, "No face detected"
def compute_emotion_detection(image):
"""
Detects a face, crops it, and classifies the facial expression.
"""
frame = np.array(image)
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
frame_resized = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb = cv2.cvtColor(frame_resized, cv2.COLOR_BGR2RGB)
face_results = face_detection.process(frame_rgb)
if face_results.detections:
detection = face_results.detections[0]
bbox = detection.location_data.relative_bounding_box
h, w, _ = frame_rgb.shape
x = int(bbox.xmin * w)
y = int(bbox.ymin * h)
box_w = int(bbox.width * w)
box_h = int(bbox.height * h)
face_crop = frame_rgb[y:y+box_h, x:x+box_w]
face_image = Image.fromarray(face_crop)
inputs = emotion_processor(face_image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = emotion_model(**inputs)
logits = outputs.logits
pred = logits.argmax(-1).item()
label = emotion_model.config.id2label[pred]
return face_crop, f"Emotion: {label}"
else:
return frame, "No face detected"
def compute_age_gender(image):
"""
Detects a face, crops it, and predicts the age & gender.
"""
frame = np.array(image)
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
frame_resized = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb = cv2.cvtColor(frame_resized, cv2.COLOR_BGR2RGB)
face_results = face_detection.process(frame_rgb)
if face_results.detections:
detection = face_results.detections[0]
bbox = detection.location_data.relative_bounding_box
h, w, _ = frame_rgb.shape
x = int(bbox.xmin * w)
y = int(bbox.ymin * h)
box_w = int(bbox.width * w)
box_h = int(bbox.height * h)
face_crop = frame_rgb[y:y+box_h, x:x+box_w]
face_image = Image.fromarray(face_crop)
inputs = age_gender_processor(face_image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = age_gender_model(**inputs)
logits = outputs.logits
pred = logits.argmax(-1).item()
label = age_gender_model.config.id2label[pred]
return face_crop, f"Age & Gender: {label}"
else:
return frame, "No face detected"
def compute_face_parsing(image):
"""
Runs face parsing (segmentation) on the provided image.
"""
image_pil = Image.fromarray(np.array(image))
inputs = face_parsing_processor(image_pil, return_tensors="pt").to(device)
with torch.no_grad():
outputs = face_parsing_model(**inputs)
logits = outputs.logits # shape: (batch, num_labels, H, W)
segmentation = logits.argmax(dim=1)[0].cpu().numpy()
# For visualization, we apply a color map to the segmentation mask.
segmentation_norm = np.uint8(255 * segmentation / (segmentation.max() + 1e-5))
segmentation_color = cv2.applyColorMap(segmentation_norm, cv2.COLORMAP_JET)
return segmentation_color, "Face Parsing completed"
def compute_deepfake_detection(image):
"""
Runs deepfake detection on the image.
"""
image_pil = Image.fromarray(np.array(image))
inputs = deepfake_processor(image_pil, return_tensors="pt").to(device)
with torch.no_grad():
outputs = deepfake_model(**inputs)
logits = outputs.logits
pred = logits.argmax(-1).item()
label = deepfake_model.config.id2label[pred]
return np.array(image), f"Deepfake Detection: {label}"
# -----------------------------
# Analysis Functions (Wrapping Inference & Green Text)
# -----------------------------
def analyze_facial_recognition(image):
annotated_face, result = compute_facial_recognition(image)
return annotated_face, f"<div style='color: lime !important;'>Facial Recognition: {result}</div>"
def analyze_emotion_detection(image):
face_crop, result = compute_emotion_detection(image)
return face_crop, f"<div style='color: lime !important;'>{result}</div>"
def analyze_age_gender(image):
face_crop, result = compute_age_gender(image)
return face_crop, f"<div style='color: lime !important;'>{result}</div>"
def analyze_face_parsing(image):
segmentation, result = compute_face_parsing(image)
return segmentation, f"<div style='color: lime !important;'>{result}</div>"
def analyze_deepfake_detection(image):
output, result = compute_deepfake_detection(image)
return output, f"<div style='color: lime !important;'>{result}</div>"
# -----------------------------
# Custom CSS (All Text in Green)
# -----------------------------
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
body {
background-color: #0e0e0e;
font-family: 'Orbitron', sans-serif;
margin: 0;
padding: 0;
color: #32CD32;
}
.gradio-container {
background: linear-gradient(135deg, #1a1a1a, #333333);
border: 2px solid #32CD32;
box-shadow: 0 0 15px #32CD32;
border-radius: 10px;
padding: 20px;
max-width: 1200px;
margin: auto;
}
.gradio-title, .gradio-description, .tab-item, .tab-item * {
color: #32CD32 !important;
text-shadow: 0 0 10px #32CD32;
}
input, button, .output {
border: 1px solid #32CD32;
box-shadow: 0 0 8px #32CD32;
color: #32CD32;
}
"""
# -----------------------------
# Create Gradio Interfaces for New Models
# -----------------------------
facial_recognition_interface = gr.Interface(
fn=analyze_facial_recognition,
inputs=gr.Image(label="Upload a Face Image for Facial Recognition"),
outputs=[gr.Image(type="numpy", label="Cropped Face / Embedding Visualization"),
gr.HTML(label="Facial Recognition Result")],
title="Facial Recognition & Identification",
description="Extracts facial embeddings using facebook/dino-vitb16 and identifies the face by comparing against a dummy database.",
live=False
)
emotion_interface = gr.Interface(
fn=analyze_emotion_detection,
inputs=gr.Image(label="Upload a Face Image for Emotion Detection"),
outputs=[gr.Image(type="numpy", label="Cropped Face"),
gr.HTML(label="Emotion Detection")],
title="Emotion Detection",
description="Classifies the facial expression using nateraw/facial-expression-recognition.",
live=False
)
age_gender_interface = gr.Interface(
fn=analyze_age_gender,
inputs=gr.Image(label="Upload a Face Image for Age & Gender Prediction"),
outputs=[gr.Image(type="numpy", label="Cropped Face"),
gr.HTML(label="Age & Gender Prediction")],
title="Age & Gender Prediction",
description="Predicts age and gender from the face using oayu/age-gender-estimation.",
live=False
)
face_parsing_interface = gr.Interface(
fn=analyze_face_parsing,
inputs=gr.Image(label="Upload a Face Image for Face Parsing"),
outputs=[gr.Image(type="numpy", label="Segmentation Overlay"),
gr.HTML(label="Face Parsing")],
title="Face Parsing",
description="Segments face regions (eyes, nose, lips, hair, etc.) using hila-chefer/face-parsing.",
live=False
)
deepfake_interface = gr.Interface(
fn=analyze_deepfake_detection,
inputs=gr.Image(label="Upload an Image for Deepfake Detection"),
outputs=[gr.Image(type="numpy", label="Input Image"),
gr.HTML(label="Deepfake Detection")],
title="Deepfake Detection",
description="Detects manipulated or deepfake images using microsoft/FaceForensics.",
live=False
)
# -----------------------------
# Create a Tabbed Interface
# -----------------------------
tabbed_interface = gr.TabbedInterface(
interface_list=[
facial_recognition_interface,
emotion_interface,
age_gender_interface,
face_parsing_interface,
deepfake_interface
],
tab_names=[
"Facial Recognition",
"Emotion Detection",
"Age & Gender",
"Face Parsing",
"Deepfake Detection"
]
)
# -----------------------------
# Wrap in a Blocks Layout & Launch
# -----------------------------
demo = gr.Blocks(css=custom_css)
with demo:
gr.Markdown("<h1 class='gradio-title' style='color: #32CD32;'>Multi-Analysis Face App</h1>")
gr.Markdown("<p class='gradio-description' style='color: #32CD32;'>Upload an image to run advanced face analysis using state-of-the-art Hugging Face models.</p>")
tabbed_interface.render()
if __name__ == "__main__":
demo.launch()
|