File size: 8,818 Bytes
fad0b28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""
Audio IO methods are defined in this module (info, read, write),
We rely on av library for faster read when possible, otherwise on torchaudio.
"""

from dataclasses import dataclass
from pathlib import Path
import logging
import typing as tp

import numpy as np
import soundfile
import torch
from torch.nn import functional as F
import torchaudio as ta

import av

from .audio_utils import f32_pcm, i16_pcm, normalize_audio


_av_initialized = False


def _init_av():
    global _av_initialized
    if _av_initialized:
        return
    logger = logging.getLogger('libav.mp3')
    logger.setLevel(logging.ERROR)
    _av_initialized = True


@dataclass(frozen=True)
class AudioFileInfo:
    sample_rate: int
    duration: float
    channels: int


def _av_info(filepath: tp.Union[str, Path]) -> AudioFileInfo:
    _init_av()
    with av.open(str(filepath)) as af:
        stream = af.streams.audio[0]
        sample_rate = stream.codec_context.sample_rate
        duration = float(stream.duration * stream.time_base)
        channels = stream.channels
        return AudioFileInfo(sample_rate, duration, channels)


def _soundfile_info(filepath: tp.Union[str, Path]) -> AudioFileInfo:
    info = soundfile.info(filepath)
    return AudioFileInfo(info.samplerate, info.duration, info.channels)


def audio_info(filepath: tp.Union[str, Path]) -> AudioFileInfo:
    # torchaudio no longer returns useful duration informations for some formats like mp3s.
    filepath = Path(filepath)
    if filepath.suffix in ['.flac', '.ogg']:  # TODO: Validate .ogg can be safely read with av_info
        # ffmpeg has some weird issue with flac.
        return _soundfile_info(filepath)
    else:
        return _av_info(filepath)


def _av_read(filepath: tp.Union[str, Path], seek_time: float = 0, duration: float = -1.) -> tp.Tuple[torch.Tensor, int]:
    """FFMPEG-based audio file reading using PyAV bindings.
    Soundfile cannot read mp3 and av_read is more efficient than torchaudio.

    Args:
        filepath (str or Path): Path to audio file to read.
        seek_time (float): Time at which to start reading in the file.
        duration (float): Duration to read from the file. If set to -1, the whole file is read.
    Returns:
        Tuple[torch.Tensor, int]: Tuple containing audio data and sample rate
    """
    _init_av()
    with av.open(str(filepath)) as af:
        stream = af.streams.audio[0]
        sr = stream.codec_context.sample_rate
        num_frames = int(sr * duration) if duration >= 0 else -1
        frame_offset = int(sr * seek_time)
        # we need a small negative offset otherwise we get some edge artifact
        # from the mp3 decoder.
        af.seek(int(max(0, (seek_time - 0.1)) / stream.time_base), stream=stream)
        frames = []
        length = 0
        for frame in af.decode(streams=stream.index):
            current_offset = int(frame.rate * frame.pts * frame.time_base)
            strip = max(0, frame_offset - current_offset)
            buf = torch.from_numpy(frame.to_ndarray())
            if buf.shape[0] != stream.channels:
                buf = buf.view(-1, stream.channels).t()
            buf = buf[:, strip:]
            frames.append(buf)
            length += buf.shape[1]
            if num_frames > 0 and length >= num_frames:
                break
        assert frames
        # If the above assert fails, it is likely because we seeked past the end of file point,
        # in which case ffmpeg returns a single frame with only zeros, and a weird timestamp.
        # This will need proper debugging, in due time.
        wav = torch.cat(frames, dim=1)
        assert wav.shape[0] == stream.channels
        if num_frames > 0:
            wav = wav[:, :num_frames]
        return f32_pcm(wav), sr


def audio_read(filepath: tp.Union[str, Path], seek_time: float = 0.,
               duration: float = -1., pad: bool = False) -> tp.Tuple[torch.Tensor, int]:
    """Read audio by picking the most appropriate backend tool based on the audio format.

    Args:
        filepath (str or Path): Path to audio file to read.
        seek_time (float): Time at which to start reading in the file.
        duration (float): Duration to read from the file. If set to -1, the whole file is read.
        pad (bool): Pad output audio if not reaching expected duration.
    Returns:
        Tuple[torch.Tensor, int]: Tuple containing audio data and sample rate.
    """
    fp = Path(filepath)
    if fp.suffix in ['.flac', '.ogg']:  # TODO: check if we can safely use av_read for .ogg
        # There is some bug with ffmpeg and reading flac
        info = _soundfile_info(filepath)
        frames = -1 if duration <= 0 else int(duration * info.sample_rate)
        frame_offset = int(seek_time * info.sample_rate)
        wav, sr = soundfile.read(filepath, start=frame_offset, frames=frames, dtype=np.float32)
        assert info.sample_rate == sr, f"Mismatch of sample rates {info.sample_rate} {sr}"
        wav = torch.from_numpy(wav).t().contiguous()
        if len(wav.shape) == 1:
            wav = torch.unsqueeze(wav, 0)
    elif (
        fp.suffix in ['.wav', '.mp3'] and fp.suffix[1:] in ta.utils.sox_utils.list_read_formats()
        and duration <= 0 and seek_time == 0
    ):
        # Torchaudio is faster if we load an entire file at once.
        wav, sr = ta.load(fp)
    else:
        wav, sr = _av_read(filepath, seek_time, duration)
    if pad and duration > 0:
        expected_frames = int(duration * sr)
        wav = F.pad(wav, (0, expected_frames - wav.shape[-1]))
    return wav, sr


def audio_write(stem_name: tp.Union[str, Path],
                wav: torch.Tensor, sample_rate: int,
                format: str = 'wav', mp3_rate: int = 320, normalize: bool = True,
                strategy: str = 'peak', peak_clip_headroom_db: float = 1,
                rms_headroom_db: float = 18, loudness_headroom_db: float = 14,
                log_clipping: bool = True, make_parent_dir: bool = True,
                add_suffix: bool = True) -> Path:
    """Convenience function for saving audio to disk. Returns the filename the audio was written to.

    Args:
        stem_name (str or Path): Filename without extension which will be added automatically.
        format (str): Either "wav" or "mp3".
        mp3_rate (int): kbps when using mp3s.
        normalize (bool): if `True` (default), normalizes according to the prescribed
            strategy (see after). If `False`, the strategy is only used in case clipping
            would happen.
        strategy (str): Can be either 'clip', 'peak', or 'rms'. Default is 'peak',
            i.e. audio is normalized by its largest value. RMS normalizes by root-mean-square
            with extra headroom to avoid clipping. 'clip' just clips.
        peak_clip_headroom_db (float): Headroom in dB when doing 'peak' or 'clip' strategy.
        rms_headroom_db (float): Headroom in dB when doing 'rms' strategy. This must be much larger
            than the `peak_clip` one to avoid further clipping.
        loudness_headroom_db (float): Target loudness for loudness normalization.
        log_clipping (bool): If True, basic logging on stderr when clipping still
            occurs despite strategy (only for 'rms').
        make_parent_dir (bool): Make parent directory if it doesn't exist.
    Returns:
        Path: Path of the saved audio.
    """
    assert wav.dtype.is_floating_point, "wav is not floating point"
    if wav.dim() == 1:
        wav = wav[None]
    elif wav.dim() > 2:
        raise ValueError("Input wav should be at most 2 dimension.")
    assert wav.isfinite().all()
    wav = normalize_audio(wav, normalize, strategy, peak_clip_headroom_db,
                          rms_headroom_db, loudness_headroom_db, log_clipping=log_clipping,
                          sample_rate=sample_rate, stem_name=str(stem_name))
    kwargs: dict = {}
    if format == 'mp3':
        suffix = '.mp3'
        kwargs.update({"compression": mp3_rate})
    elif format == 'wav':
        wav = i16_pcm(wav)
        suffix = '.wav'
        kwargs.update({"encoding": "PCM_S", "bits_per_sample": 16})
    else:
        raise RuntimeError(f"Invalid format {format}. Only wav or mp3 are supported.")
    if not add_suffix:
        suffix = ''
    path = Path(str(stem_name) + suffix)
    if make_parent_dir:
        path.parent.mkdir(exist_ok=True, parents=True)
    try:
        ta.save(path, wav, sample_rate, **kwargs)
    except Exception:
        if path.exists():
            # we do not want to leave half written files around.
            path.unlink()
        raise
    return path