Spaces:
Runtime error
Runtime error
File size: 38,569 Bytes
3ac1768 ba0fdb0 3ac1768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 |
from collections import OrderedDict, defaultdict
import json
import argparse
import sys
import xml.etree.ElementTree as ET
import os
import random
import io
import torch
from torchvision import transforms
from PIL import Image
from fitz import Rect
import numpy as np
import pandas as pd
import matplotlib
#matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.patches import Patch
from main import get_model
import postprocess
sys.path.append("../detr")
from models import build_model
class MaxResize(object):
def __init__(self, max_size=800):
self.max_size = max_size
def __call__(self, image):
width, height = image.size
current_max_size = max(width, height)
scale = self.max_size / current_max_size
resized_image = image.resize((int(round(scale*width)), int(round(scale*height))))
return resized_image
detection_transform = transforms.Compose([
MaxResize(800),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
structure_transform = transforms.Compose([
MaxResize(1000),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def get_class_map(data_type):
if data_type == 'structure':
class_map = {
'table': 0,
'table column': 1,
'table row': 2,
'table column header': 3,
'table projected row header': 4,
'table spanning cell': 5,
'no object': 6
}
elif data_type == 'detection':
class_map = {'table': 0, 'table rotated': 1, 'no object': 2}
return class_map
detection_class_thresholds = {
"table": 0.5,
"table rotated": 0.5,
"no object": 10
}
structure_class_thresholds = {
"table": 0.5,
"table column": 0.5,
"table row": 0.5,
"table column header": 0.5,
"table projected row header": 0.5,
"table spanning cell": 0.5,
"no object": 10
}
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--image_dir',
help="Directory for input images")
parser.add_argument('--words_dir',
help="Directory for input words")
parser.add_argument('--out_dir',
help="Output directory")
parser.add_argument('--mode',
help="The processing to apply to the input image and tokens",
choices=['detect', 'recognize', 'extract'])
parser.add_argument('--structure_config_path',
help="Filepath to the structure model config file")
parser.add_argument('--structure_model_path', help="The path to the structure model")
parser.add_argument('--detection_config_path',
help="Filepath to the detection model config file")
parser.add_argument('--detection_model_path', help="The path to the detection model")
parser.add_argument('--detection_device', default="cuda")
parser.add_argument('--structure_device', default="cuda")
parser.add_argument('--crops', '-p', action='store_true',
help='Output cropped data from table detections')
parser.add_argument('--objects', '-o', action='store_true',
help='Output objects')
parser.add_argument('--cells', '-l', action='store_true',
help='Output cells list')
parser.add_argument('--html', '-m', action='store_true',
help='Output HTML')
parser.add_argument('--csv', '-c', action='store_true',
help='Output CSV')
parser.add_argument('--verbose', '-v', action='store_true',
help='Verbose output')
parser.add_argument('--visualize', '-z', action='store_true',
help='Visualize output')
parser.add_argument('--crop_padding', type=int, default=10,
help="The amount of padding to add around a detected table when cropping.")
return parser.parse_args()
# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
def iob(bbox1, bbox2):
"""
Compute the intersection area over box area, for bbox1.
"""
intersection = Rect(bbox1).intersect(bbox2)
bbox1_area = Rect(bbox1).get_area()
if bbox1_area > 0:
return intersection.get_area() / bbox1_area
return 0
def align_headers(headers, rows):
"""
Adjust the header boundary to be the convex hull of the rows it intersects
at least 50% of the height of.
For now, we are not supporting tables with multiple headers, so we need to
eliminate anything besides the top-most header.
"""
aligned_headers = []
for row in rows:
row['column header'] = False
header_row_nums = []
for header in headers:
for row_num, row in enumerate(rows):
row_height = row['bbox'][3] - row['bbox'][1]
min_row_overlap = max(row['bbox'][1], header['bbox'][1])
max_row_overlap = min(row['bbox'][3], header['bbox'][3])
overlap_height = max_row_overlap - min_row_overlap
if overlap_height / row_height >= 0.5:
header_row_nums.append(row_num)
if len(header_row_nums) == 0:
return aligned_headers
header_rect = Rect()
if header_row_nums[0] > 0:
header_row_nums = list(range(header_row_nums[0]+1)) + header_row_nums
last_row_num = -1
for row_num in header_row_nums:
if row_num == last_row_num + 1:
row = rows[row_num]
row['column header'] = True
header_rect = header_rect.include_rect(row['bbox'])
last_row_num = row_num
else:
# Break as soon as a non-header row is encountered.
# This ignores any subsequent rows in the table labeled as a header.
# Having more than 1 header is not supported currently.
break
header = {'bbox': list(header_rect)}
aligned_headers.append(header)
return aligned_headers
def refine_table_structure(table_structure, class_thresholds):
"""
Apply operations to the detected table structure objects such as
thresholding, NMS, and alignment.
"""
rows = table_structure["rows"]
columns = table_structure['columns']
# Process the headers
column_headers = table_structure['column headers']
column_headers = postprocess.apply_threshold(column_headers, class_thresholds["table column header"])
column_headers = postprocess.nms(column_headers)
column_headers = align_headers(column_headers, rows)
# Process spanning cells
spanning_cells = [elem for elem in table_structure['spanning cells'] if not elem['projected row header']]
projected_row_headers = [elem for elem in table_structure['spanning cells'] if elem['projected row header']]
spanning_cells = postprocess.apply_threshold(spanning_cells, class_thresholds["table spanning cell"])
projected_row_headers = postprocess.apply_threshold(projected_row_headers,
class_thresholds["table projected row header"])
spanning_cells += projected_row_headers
# Align before NMS for spanning cells because alignment brings them into agreement
# with rows and columns first; if spanning cells still overlap after this operation,
# the threshold for NMS can basically be lowered to just above 0
spanning_cells = postprocess.align_supercells(spanning_cells, rows, columns)
spanning_cells = postprocess.nms_supercells(spanning_cells)
postprocess.header_supercell_tree(spanning_cells)
table_structure['columns'] = columns
table_structure['rows'] = rows
table_structure['spanning cells'] = spanning_cells
table_structure['column headers'] = column_headers
return table_structure
def outputs_to_objects(outputs, img_size, class_idx2name):
m = outputs['pred_logits'].softmax(-1).max(-1)
pred_labels = list(m.indices.detach().cpu().numpy())[0]
pred_scores = list(m.values.detach().cpu().numpy())[0]
pred_bboxes = outputs['pred_boxes'].detach().cpu()[0]
pred_bboxes = [elem.tolist() for elem in rescale_bboxes(pred_bboxes, img_size)]
objects = []
for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes):
class_label = class_idx2name[int(label)]
if not class_label == 'no object':
objects.append({'label': class_label, 'score': float(score),
'bbox': [float(elem) for elem in bbox]})
return objects
def objects_to_crops(img, tokens, objects, class_thresholds, padding=10):
"""
Process the bounding boxes produced by the table detection model into
cropped table images and cropped tokens.
"""
table_crops = []
for obj in objects:
if obj['score'] < class_thresholds[obj['label']]:
continue
cropped_table = {}
bbox = obj['bbox']
bbox = [bbox[0]-padding, bbox[1]-padding, bbox[2]+padding, bbox[3]+padding]
cropped_img = img.crop(bbox)
table_tokens = [token for token in tokens if iob(token['bbox'], bbox) >= 0.5]
for token in table_tokens:
token['bbox'] = [token['bbox'][0]-bbox[0],
token['bbox'][1]-bbox[1],
token['bbox'][2]-bbox[0],
token['bbox'][3]-bbox[1]]
# If table is predicted to be rotated, rotate cropped image and tokens/words:
if obj['label'] == 'table rotated':
cropped_img = cropped_img.rotate(270, expand=True)
for token in table_tokens:
bbox = token['bbox']
bbox = [cropped_img.size[0]-bbox[3]-1,
bbox[0],
cropped_img.size[0]-bbox[1]-1,
bbox[2]]
token['bbox'] = bbox
cropped_table['image'] = cropped_img
cropped_table['tokens'] = table_tokens
table_crops.append(cropped_table)
return table_crops
def objects_to_structures(objects, tokens, class_thresholds):
"""
Process the bounding boxes produced by the table structure recognition model into
a *consistent* set of table structures (rows, columns, spanning cells, headers).
This entails resolving conflicts/overlaps, and ensuring the boxes meet certain alignment
conditions (for example: rows should all have the same width, etc.).
"""
tables = [obj for obj in objects if obj['label'] == 'table']
table_structures = []
for table in tables:
table_objects = [obj for obj in objects if iob(obj['bbox'], table['bbox']) >= 0.5]
table_tokens = [token for token in tokens if iob(token['bbox'], table['bbox']) >= 0.5]
structure = {}
columns = [obj for obj in table_objects if obj['label'] == 'table column']
rows = [obj for obj in table_objects if obj['label'] == 'table row']
column_headers = [obj for obj in table_objects if obj['label'] == 'table column header']
spanning_cells = [obj for obj in table_objects if obj['label'] == 'table spanning cell']
for obj in spanning_cells:
obj['projected row header'] = False
projected_row_headers = [obj for obj in table_objects if obj['label'] == 'table projected row header']
for obj in projected_row_headers:
obj['projected row header'] = True
spanning_cells += projected_row_headers
for obj in rows:
obj['column header'] = False
for header_obj in column_headers:
if iob(obj['bbox'], header_obj['bbox']) >= 0.5:
obj['column header'] = True
# Refine table structures
rows = postprocess.refine_rows(rows, table_tokens, class_thresholds['table row'])
columns = postprocess.refine_columns(columns, table_tokens, class_thresholds['table column'])
# Shrink table bbox to just the total height of the rows
# and the total width of the columns
row_rect = Rect()
for obj in rows:
row_rect.include_rect(obj['bbox'])
column_rect = Rect()
for obj in columns:
column_rect.include_rect(obj['bbox'])
table['row_column_bbox'] = [column_rect[0], row_rect[1], column_rect[2], row_rect[3]]
table['bbox'] = table['row_column_bbox']
# Process the rows and columns into a complete segmented table
columns = postprocess.align_columns(columns, table['row_column_bbox'])
rows = postprocess.align_rows(rows, table['row_column_bbox'])
structure['rows'] = rows
structure['columns'] = columns
structure['column headers'] = column_headers
structure['spanning cells'] = spanning_cells
if len(rows) > 0 and len(columns) > 1:
structure = refine_table_structure(structure, class_thresholds)
table_structures.append(structure)
return table_structures
def structure_to_cells(table_structure, tokens):
"""
Assuming the row, column, spanning cell, and header bounding boxes have
been refined into a set of consistent table structures, process these
table structures into table cells. This is a universal representation
format for the table, which can later be exported to Pandas or CSV formats.
Classify the cells as header/access cells or data cells
based on if they intersect with the header bounding box.
"""
columns = table_structure['columns']
rows = table_structure['rows']
spanning_cells = table_structure['spanning cells']
cells = []
subcells = []
# Identify complete cells and subcells
for column_num, column in enumerate(columns):
for row_num, row in enumerate(rows):
column_rect = Rect(list(column['bbox']))
row_rect = Rect(list(row['bbox']))
cell_rect = row_rect.intersect(column_rect)
header = 'column header' in row and row['column header']
cell = {'bbox': list(cell_rect), 'column_nums': [column_num], 'row_nums': [row_num],
'column header': header}
cell['subcell'] = False
for spanning_cell in spanning_cells:
spanning_cell_rect = Rect(list(spanning_cell['bbox']))
if (spanning_cell_rect.intersect(cell_rect).get_area()
/ cell_rect.get_area()) > 0.5:
cell['subcell'] = True
break
if cell['subcell']:
subcells.append(cell)
else:
#cell text = extract_text_inside_bbox(table_spans, cell['bbox'])
#cell['cell text'] = cell text
cell['projected row header'] = False
cells.append(cell)
for spanning_cell in spanning_cells:
spanning_cell_rect = Rect(list(spanning_cell['bbox']))
cell_columns = set()
cell_rows = set()
cell_rect = None
header = True
for subcell in subcells:
subcell_rect = Rect(list(subcell['bbox']))
subcell_rect_area = subcell_rect.get_area()
if (subcell_rect.intersect(spanning_cell_rect).get_area()
/ subcell_rect_area) > 0.5:
if cell_rect is None:
cell_rect = Rect(list(subcell['bbox']))
else:
cell_rect.include_rect(Rect(list(subcell['bbox'])))
cell_rows = cell_rows.union(set(subcell['row_nums']))
cell_columns = cell_columns.union(set(subcell['column_nums']))
# By convention here, all subcells must be classified
# as header cells for a spanning cell to be classified as a header cell;
# otherwise, this could lead to a non-rectangular header region
header = header and 'column header' in subcell and subcell['column header']
if len(cell_rows) > 0 and len(cell_columns) > 0:
cell = {'bbox': list(cell_rect), 'column_nums': list(cell_columns), 'row_nums': list(cell_rows),
'column header': header, 'projected row header': spanning_cell['projected row header']}
cells.append(cell)
# Compute a confidence score based on how well the page tokens
# slot into the cells reported by the model
_, _, cell_match_scores = postprocess.slot_into_containers(cells, tokens)
try:
mean_match_score = sum(cell_match_scores) / len(cell_match_scores)
min_match_score = min(cell_match_scores)
confidence_score = (mean_match_score + min_match_score)/2
except:
confidence_score = 0
# Dilate rows and columns before final extraction
#dilated_columns = fill_column_gaps(columns, table_bbox)
dilated_columns = columns
#dilated_rows = fill_row_gaps(rows, table_bbox)
dilated_rows = rows
for cell in cells:
column_rect = Rect()
for column_num in cell['column_nums']:
column_rect.include_rect(list(dilated_columns[column_num]['bbox']))
row_rect = Rect()
for row_num in cell['row_nums']:
row_rect.include_rect(list(dilated_rows[row_num]['bbox']))
cell_rect = column_rect.intersect(row_rect)
cell['bbox'] = list(cell_rect)
span_nums_by_cell, _, _ = postprocess.slot_into_containers(cells, tokens, overlap_threshold=0.001,
unique_assignment=True, forced_assignment=False)
for cell, cell_span_nums in zip(cells, span_nums_by_cell):
cell_spans = [tokens[num] for num in cell_span_nums]
# TODO: Refine how text is extracted; should be character-based, not span-based;
# but need to associate
cell['cell text'] = postprocess.extract_text_from_spans(cell_spans, remove_integer_superscripts=False)
cell['spans'] = cell_spans
# Adjust the row, column, and cell bounding boxes to reflect the extracted text
num_rows = len(rows)
rows = postprocess.sort_objects_top_to_bottom(rows)
num_columns = len(columns)
columns = postprocess.sort_objects_left_to_right(columns)
min_y_values_by_row = defaultdict(list)
max_y_values_by_row = defaultdict(list)
min_x_values_by_column = defaultdict(list)
max_x_values_by_column = defaultdict(list)
for cell in cells:
min_row = min(cell["row_nums"])
max_row = max(cell["row_nums"])
min_column = min(cell["column_nums"])
max_column = max(cell["column_nums"])
for span in cell['spans']:
min_x_values_by_column[min_column].append(span['bbox'][0])
min_y_values_by_row[min_row].append(span['bbox'][1])
max_x_values_by_column[max_column].append(span['bbox'][2])
max_y_values_by_row[max_row].append(span['bbox'][3])
for row_num, row in enumerate(rows):
if len(min_x_values_by_column[0]) > 0:
row['bbox'][0] = min(min_x_values_by_column[0])
if len(min_y_values_by_row[row_num]) > 0:
row['bbox'][1] = min(min_y_values_by_row[row_num])
if len(max_x_values_by_column[num_columns-1]) > 0:
row['bbox'][2] = max(max_x_values_by_column[num_columns-1])
if len(max_y_values_by_row[row_num]) > 0:
row['bbox'][3] = max(max_y_values_by_row[row_num])
for column_num, column in enumerate(columns):
if len(min_x_values_by_column[column_num]) > 0:
column['bbox'][0] = min(min_x_values_by_column[column_num])
if len(min_y_values_by_row[0]) > 0:
column['bbox'][1] = min(min_y_values_by_row[0])
if len(max_x_values_by_column[column_num]) > 0:
column['bbox'][2] = max(max_x_values_by_column[column_num])
if len(max_y_values_by_row[num_rows-1]) > 0:
column['bbox'][3] = max(max_y_values_by_row[num_rows-1])
for cell in cells:
row_rect = Rect()
column_rect = Rect()
for row_num in cell['row_nums']:
row_rect.include_rect(list(rows[row_num]['bbox']))
for column_num in cell['column_nums']:
column_rect.include_rect(list(columns[column_num]['bbox']))
cell_rect = row_rect.intersect(column_rect)
if cell_rect.get_area() > 0:
cell['bbox'] = list(cell_rect)
pass
return cells, confidence_score
def cells_to_csv(cells):
if len(cells) > 0:
num_columns = max([max(cell['column_nums']) for cell in cells]) + 1
num_rows = max([max(cell['row_nums']) for cell in cells]) + 1
else:
return
header_cells = [cell for cell in cells if cell['column header']]
if len(header_cells) > 0:
max_header_row = max([max(cell['row_nums']) for cell in header_cells])
else:
max_header_row = -1
table_array = np.empty([num_rows, num_columns], dtype="object")
if len(cells) > 0:
for cell in cells:
for row_num in cell['row_nums']:
for column_num in cell['column_nums']:
table_array[row_num, column_num] = cell["cell text"]
header = table_array[:max_header_row+1,:]
flattened_header = []
for col in header.transpose():
flattened_header.append(' | '.join(OrderedDict.fromkeys(col)))
df = pd.DataFrame(table_array[max_header_row+1:,:], index=None, columns=flattened_header)
return df.to_csv(index=None)
def cells_to_html(cells):
cells = sorted(cells, key=lambda k: min(k['column_nums']))
cells = sorted(cells, key=lambda k: min(k['row_nums']))
table = ET.Element("table")
current_row = -1
for cell in cells:
this_row = min(cell['row_nums'])
attrib = {}
colspan = len(cell['column_nums'])
if colspan > 1:
attrib['colspan'] = str(colspan)
rowspan = len(cell['row_nums'])
if rowspan > 1:
attrib['rowspan'] = str(rowspan)
if this_row > current_row:
current_row = this_row
if cell['column header']:
cell_tag = "th"
row = ET.SubElement(table, "thead")
else:
cell_tag = "td"
row = ET.SubElement(table, "tr")
tcell = ET.SubElement(row, cell_tag, attrib=attrib)
tcell.text = cell['cell text']
return str(ET.tostring(table, encoding="unicode", short_empty_elements=False))
def visualize_detected_tables(img, det_tables, out_path):
plt.imshow(img, interpolation="lanczos")
plt.gcf().set_size_inches(20, 20)
ax = plt.gca()
for det_table in det_tables:
bbox = det_table['bbox']
if det_table['label'] == 'table':
facecolor = (1, 0, 0.45)
edgecolor = (1, 0, 0.45)
alpha = 0.3
linewidth = 2
hatch='//////'
elif det_table['label'] == 'table rotated':
facecolor = (0.95, 0.6, 0.1)
edgecolor = (0.95, 0.6, 0.1)
alpha = 0.3
linewidth = 2
hatch='//////'
else:
continue
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
edgecolor='none',facecolor=facecolor, alpha=0.1)
ax.add_patch(rect)
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
edgecolor=edgecolor,facecolor='none',linestyle='-', alpha=alpha)
ax.add_patch(rect)
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=0,
edgecolor=edgecolor,facecolor='none',linestyle='-', hatch=hatch, alpha=0.2)
ax.add_patch(rect)
plt.xticks([], [])
plt.yticks([], [])
legend_elements = [Patch(facecolor=(1, 0, 0.45), edgecolor=(1, 0, 0.45),
label='Table', hatch='//////', alpha=0.3),
Patch(facecolor=(0.95, 0.6, 0.1), edgecolor=(0.95, 0.6, 0.1),
label='Table (rotated)', hatch='//////', alpha=0.3)]
plt.legend(handles=legend_elements, bbox_to_anchor=(0.5, -0.02), loc='upper center', borderaxespad=0,
fontsize=10, ncol=2)
plt.gcf().set_size_inches(10, 10)
plt.axis('off')
plt.savefig(out_path, bbox_inches='tight', dpi=150)
plt.close()
return
def visualize_cells(img, cells, out_path):
plt.imshow(img, interpolation="lanczos")
plt.gcf().set_size_inches(20, 20)
ax = plt.gca()
for cell in cells:
bbox = cell['bbox']
if cell['column header']:
facecolor = (1, 0, 0.45)
edgecolor = (1, 0, 0.45)
alpha = 0.3
linewidth = 2
hatch='//////'
elif cell['projected row header']:
facecolor = (0.95, 0.6, 0.1)
edgecolor = (0.95, 0.6, 0.1)
alpha = 0.3
linewidth = 2
hatch='//////'
else:
facecolor = (0.3, 0.74, 0.8)
edgecolor = (0.3, 0.7, 0.6)
alpha = 0.3
linewidth = 2
hatch='\\\\\\\\\\\\'
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
edgecolor='none',facecolor=facecolor, alpha=0.1)
ax.add_patch(rect)
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
edgecolor=edgecolor,facecolor='none',linestyle='-', alpha=alpha)
ax.add_patch(rect)
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=0,
edgecolor=edgecolor,facecolor='none',linestyle='-', hatch=hatch, alpha=0.2)
ax.add_patch(rect)
plt.xticks([], [])
plt.yticks([], [])
legend_elements = [Patch(facecolor=(0.3, 0.74, 0.8), edgecolor=(0.3, 0.7, 0.6),
label='Data cell', hatch='\\\\\\\\\\\\', alpha=0.3),
Patch(facecolor=(1, 0, 0.45), edgecolor=(1, 0, 0.45),
label='Column header cell', hatch='//////', alpha=0.3),
Patch(facecolor=(0.95, 0.6, 0.1), edgecolor=(0.95, 0.6, 0.1),
label='Projected row header cell', hatch='//////', alpha=0.3)]
plt.legend(handles=legend_elements, bbox_to_anchor=(0.5, -0.02), loc='upper center', borderaxespad=0,
fontsize=10, ncol=3)
plt.gcf().set_size_inches(10, 10)
plt.axis('off')
plt.savefig(out_path, bbox_inches='tight', dpi=150)
plt.close()
return
class TableExtractionPipeline(object):
def __init__(self, det_device=None, str_device=None,
det_model=None, str_model=None,
det_model_path=None, str_model_path=None,
det_config_path=None, str_config_path=None):
self.det_device = det_device
self.str_device = str_device
self.det_class_name2idx = get_class_map('detection')
self.det_class_idx2name = {v:k for k, v in self.det_class_name2idx.items()}
self.det_class_thresholds = detection_class_thresholds
self.str_class_name2idx = get_class_map('structure')
self.str_class_idx2name = {v:k for k, v in self.str_class_name2idx.items()}
self.str_class_thresholds = structure_class_thresholds
if not det_config_path is None:
with open(det_config_path, 'r') as f:
det_config = json.load(f)
det_args = type('Args', (object,), det_config)
det_args.device = det_device
self.det_model, _, _ = build_model(det_args)
print("Detection model initialized.")
if not det_model_path is None:
self.det_model.load_state_dict(torch.load(det_model_path,
map_location=torch.device(det_device)))
self.det_model.to(det_device)
self.det_model.eval()
print("Detection model weights loaded.")
else:
self.det_model = None
if not str_config_path is None:
with open(str_config_path, 'r') as f:
str_config = json.load(f)
str_args = type('Args', (object,), str_config)
str_args.device = str_device
self.str_model, _, _ = build_model(str_args)
print("Structure model initialized.")
if not str_model_path is None:
self.str_model.load_state_dict(torch.load(str_model_path,
map_location=torch.device(str_device)))
self.str_model.to(str_device)
self.str_model.eval()
print("Structure model weights loaded.")
else:
self.str_model = None
def __call__(self, page_image, page_tokens=None):
return self.extract(self, page_image, page_tokens)
def detect(self, img, tokens=None, out_objects=True, out_crops=False, crop_padding=10):
out_formats = {}
if self.det_model is None:
print("No detection model loaded.")
return out_formats
# Transform the image how the model expects it
img_tensor = detection_transform(img)
# Run input image through the model
outputs = self.det_model([img_tensor.to(self.det_device)])
# Post-process detected objects, assign class labels
objects = outputs_to_objects(outputs, img.size, self.det_class_idx2name)
if out_objects:
out_formats['objects'] = objects
if not out_crops:
return out_formats
# Crop image and tokens for detected table
if out_crops:
tables_crops = objects_to_crops(img, tokens, objects, self.det_class_thresholds,
padding=crop_padding)
out_formats['crops'] = tables_crops
return out_formats
def recognize(self, img, tokens=None, out_objects=False, out_cells=False,
out_html=False, out_csv=False):
out_formats = {}
if self.str_model is None:
print("No structure model loaded.")
return out_formats
if not (out_objects or out_cells or out_html or out_csv):
print("No output format specified")
return out_formats
# Transform the image how the model expects it
img_tensor = structure_transform(img)
# Run input image through the model
outputs = self.str_model([img_tensor.to(self.str_device)])
# Post-process detected objects, assign class labels
objects = outputs_to_objects(outputs, img.size, self.str_class_idx2name)
if out_objects:
out_formats['objects'] = objects
if not (out_cells or out_html or out_csv):
return out_formats
# Further process the detected objects so they correspond to a consistent table
tables_structure = objects_to_structures(objects, tokens, self.str_class_thresholds)
# Enumerate all table cells: grid cells and spanning cells
tables_cells = [structure_to_cells(structure, tokens)[0] for structure in tables_structure]
if out_cells:
out_formats['cells'] = tables_cells
if not (out_html or out_csv):
return out_formats
# Convert cells to HTML
if out_html:
tables_htmls = [cells_to_html(cells) for cells in tables_cells]
out_formats['html'] = tables_htmls
# Convert cells to CSV, including flattening multi-row column headers to a single row
if out_csv:
tables_csvs = [cells_to_csv(cells) for cells in tables_cells]
out_formats['csv'] = tables_csvs
return out_formats
def extract(self, img, tokens=None, out_objects=True, out_crops=False, out_cells=False,
out_html=False, out_csv=False, crop_padding=10):
detect_out = self.detect(img, tokens=tokens, out_objects=False, out_crops=True,
crop_padding=crop_padding)
cropped_tables = detect_out['crops']
extracted_tables = []
for table in cropped_tables:
img = table['image']
tokens = table['tokens']
extracted_table = self.recognize(img, tokens=tokens, out_objects=out_objects,
out_cells=out_cells, out_html=out_html, out_csv=out_csv)
extracted_table['image'] = img
extracted_table['tokens'] = tokens
extracted_tables.append(extracted_table)
return extracted_tables
def output_result(key, val, args, img, img_file):
if key == 'objects':
if args.verbose:
print(val)
out_file = img_file.replace(".jpg", "_objects.json")
with open(os.path.join(args.out_dir, out_file), 'w') as f:
json.dump(val, f)
if args.visualize:
out_file = img_file.replace(".jpg", "_fig_tables.jpg")
out_path = os.path.join(args.out_dir, out_file)
visualize_detected_tables(img, val, out_path)
elif not key == 'image' and not key == 'tokens':
for idx, elem in enumerate(val):
if key == 'crops':
for idx, cropped_table in enumerate(val):
out_img_file = img_file.replace(".jpg", "_table_{}.jpg".format(idx))
cropped_table['image'].save(os.path.join(args.out_dir,
out_img_file))
out_words_file = out_img_file.replace(".jpg", "_words.json")
with open(os.path.join(args.out_dir, out_words_file), 'w') as f:
json.dump(cropped_table['tokens'], f)
elif key == 'cells':
out_file = img_file.replace(".jpg", "_{}_objects.json".format(idx))
with open(os.path.join(args.out_dir, out_file), 'w') as f:
json.dump(elem, f)
if args.verbose:
print(elem)
if args.visualize:
out_file = img_file.replace(".jpg", "_fig_cells.jpg")
out_path = os.path.join(args.out_dir, out_file)
visualize_cells(img, elem, out_path)
else:
out_file = img_file.replace(".jpg", "_{}.{}".format(idx, key))
with open(os.path.join(args.out_dir, out_file), 'w') as f:
f.write(elem)
if args.verbose:
print(elem)
def main():
args = get_args()
print(args.__dict__)
print('-' * 100)
if not args.out_dir is None and not os.path.exists(args.out_dir):
os.makedirs(args.out_dir)
# Create inference pipeline
print("Creating inference pipeline")
pipe = TableExtractionPipeline(det_device=args.detection_device,
str_device=args.structure_device,
det_config_path=args.detection_config_path,
det_model_path=args.detection_model_path,
str_config_path=args.structure_config_path,
str_model_path=args.structure_model_path)
# Load images
img_files = os.listdir(args.image_dir)
num_files = len(img_files)
random.shuffle(img_files)
for count, img_file in enumerate(img_files):
print("({}/{})".format(count+1, num_files))
img_path = os.path.join(args.image_dir, img_file)
img = Image.open(img_path)
print("Image loaded.")
if not args.words_dir is None:
tokens_path = os.path.join(args.words_dir, img_file.replace(".jpg", "_words.json"))
with open(tokens_path, 'r') as f:
tokens = json.load(f)
# Handle dictionary format
if type(tokens) is dict and 'words' in tokens:
tokens = tokens['words']
# 'tokens' is a list of tokens
# Need to be in a relative reading order
# If no order is provided, use current order
for idx, token in enumerate(tokens):
if not 'span_num' in token:
token['span_num'] = idx
if not 'line_num' in token:
token['line_num'] = 0
if not 'block_num' in token:
token['block_num'] = 0
else:
tokens = []
if args.mode == 'recognize':
extracted_table = pipe.recognize(img, tokens, out_objects=args.objects, out_cells=args.csv,
out_html=args.html, out_csv=args.csv)
print("Table(s) recognized.")
for key, val in extracted_table.items():
output_result(key, val, args, img, img_file)
if args.mode == 'detect':
detected_tables = pipe.detect(img, tokens, out_objects=args.objects, out_crops=args.crops)
print("Table(s) detected.")
for key, val in detected_tables.items():
output_result(key, val, args, img, img_file)
if args.mode == 'extract':
extracted_tables = pipe.extract(img, tokens, out_objects=args.objects, out_cells=args.csv,
out_html=args.html, out_csv=args.csv,
crop_padding=args.crop_padding)
print("Table(s) extracted.")
for table_idx, extracted_table in enumerate(extracted_tables):
for key, val in extracted_table.items():
output_result(key, val, args, extracted_table['image'],
img_file.replace('.jpg', '_{}.jpg'.format(table_idx)))
if __name__ == "__main__":
main() |