File size: 18,745 Bytes
3ac1768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
"""
Copyright (C) 2021 Microsoft Corporation
"""
import itertools
from difflib import SequenceMatcher
import xml.etree.ElementTree as ET
from collections import defaultdict

import numpy as np
from fitz import Rect


def compute_fscore(num_true_positives, num_true, num_positives):
    """
    Compute the f-score or f-measure for a collection of predictions.

    Conventions:
    - precision is 1 when there are no predicted instances
    - recall is 1 when there are no true instances
    - fscore is 0 when recall or precision is 0
    """
    if num_positives > 0:
        precision = num_true_positives / num_positives
    else:
        precision = 1
    if num_true > 0:
        recall = num_true_positives / num_true
    else:
        recall = 1
        
    if precision + recall > 0:
        fscore = 2 * precision * recall / (precision + recall)
    else:
        fscore = 0

    return fscore, precision, recall 


def initialize_DP(sequence1_length, sequence2_length):
    """
    Helper function to initialize dynamic programming data structures.
    """
    # Initialize DP tables
    scores = np.zeros((sequence1_length + 1, sequence2_length + 1))
    pointers = np.zeros((sequence1_length + 1, sequence2_length + 1))
    
    # Initialize pointers in DP table
    for seq1_idx in range(1, sequence1_length + 1):
        pointers[seq1_idx, 0] = -1
        
    # Initialize pointers in DP table
    for seq2_idx in range(1, sequence2_length + 1):
        pointers[0, seq2_idx] = 1

    return scores, pointers


def traceback(pointers):
    """
    Dynamic programming traceback to determine the aligned indices
    between the two sequences.

    Traceback convention: -1 = up, 1 = left, 0 = diag up-left
    """
    seq1_idx = pointers.shape[0] - 1
    seq2_idx = pointers.shape[1] - 1
    aligned_sequence1_indices = []
    aligned_sequence2_indices = []
    while not (seq1_idx == 0 and seq2_idx == 0):
        if pointers[seq1_idx, seq2_idx] == -1:
            seq1_idx -= 1
        elif pointers[seq1_idx, seq2_idx] == 1:
            seq2_idx -= 1
        else:
            seq1_idx -= 1
            seq2_idx -= 1
            aligned_sequence1_indices.append(seq1_idx)
            aligned_sequence2_indices.append(seq2_idx)
            
    aligned_sequence1_indices = aligned_sequence1_indices[::-1]
    aligned_sequence2_indices = aligned_sequence2_indices[::-1]

    return aligned_sequence1_indices, aligned_sequence2_indices


def align_1d(sequence1, sequence2, reward_lookup, return_alignment=False):
    '''
    Dynamic programming alignment between two sequences,
    with memoized rewards.

    Sequences are represented as indices into the rewards lookup table.

    Traceback convention: -1 = up, 1 = left, 0 = diag up-left
    '''
    sequence1_length = len(sequence1)
    sequence2_length = len(sequence2)

    scores, pointers = initialize_DP(sequence1_length,
                                     sequence2_length)
        
    for seq1_idx in range(1, sequence1_length+1):
        for seq2_idx in range(1, sequence2_length+1):
            reward = reward_lookup[sequence1[seq1_idx-1] + sequence2[seq2_idx-1]]
            diag_score = scores[seq1_idx-1, seq2_idx-1] + reward
            skip_seq2_score = scores[seq1_idx, seq2_idx-1]
            skip_seq1_score = scores[seq1_idx-1, seq2_idx]
               
            max_score = max(diag_score, skip_seq1_score, skip_seq2_score)
            scores[seq1_idx, seq2_idx] = max_score
            if diag_score == max_score:
                pointers[seq1_idx, seq2_idx] = 0
            elif skip_seq1_score == max_score:
                pointers[seq1_idx, seq2_idx] = -1
            else: # skip_seq2_score == max_score
                pointers[seq1_idx, seq2_idx] = 1
    
    score = scores[-1, -1]
    
    if not return_alignment:
        return score
    
    # Traceback
    sequence1_indices, sequence2_indices = traceback(pointers)
    
    return sequence1_indices, sequence2_indices, score


def align_2d_outer(true_shape, pred_shape, reward_lookup):
    '''
    Dynamic programming matrix alignment posed as 2D
    sequence-of-sequences alignment:
    Align two outer sequences whose entries are also sequences,
    where the match reward between the inner sequence entries
    is their 1D sequence alignment score.

    Traceback convention: -1 = up, 1 = left, 0 = diag up-left
    '''
    
    scores, pointers = initialize_DP(true_shape[0], pred_shape[0])
        
    for row_idx in range(1, true_shape[0] + 1):
        for col_idx in range(1, pred_shape[0] + 1):
            reward = align_1d([(row_idx-1, tcol) for tcol in range(true_shape[1])],
                              [(col_idx-1, prow) for prow in range(pred_shape[1])],
                              reward_lookup)
            diag_score = scores[row_idx - 1, col_idx - 1] + reward
            same_row_score = scores[row_idx, col_idx - 1]
            same_col_score = scores[row_idx - 1, col_idx]
               
            max_score = max(diag_score, same_col_score, same_row_score)
            scores[row_idx, col_idx] = max_score
            if diag_score == max_score:
                pointers[row_idx, col_idx] = 0
            elif same_col_score == max_score:
                pointers[row_idx, col_idx] = -1
            else:
                pointers[row_idx, col_idx] = 1
    
    score = scores[-1, -1]
            
    aligned_true_indices, aligned_pred_indices = traceback(pointers)
    
    return aligned_true_indices, aligned_pred_indices, score


def factored_2dmss(true_cell_grid, pred_cell_grid, reward_function):
    """
    Factored 2D-MSS: Factored two-dimensional most-similar substructures

    This is a polynomial-time heuristic to computing the 2D-MSS of two matrices,
    which is NP hard.

    A substructure of a matrix is a subset of its rows and its columns.

    The most similar substructures of two matrices, A and B, are the substructures
    A' and B', where the sum of the similarity over all corresponding entries
    A'(i, j) and B'(i, j) is greatest.
    """
    pre_computed_rewards = {}
    transpose_rewards = {}
    for trow, tcol, prow, pcol in itertools.product(range(true_cell_grid.shape[0]),
                                                    range(true_cell_grid.shape[1]),
                                                    range(pred_cell_grid.shape[0]),
                                                    range(pred_cell_grid.shape[1])):

        reward = reward_function(true_cell_grid[trow, tcol], pred_cell_grid[prow, pcol])

        pre_computed_rewards[(trow, tcol, prow, pcol)] = reward
        transpose_rewards[(tcol, trow, pcol, prow)] = reward

    num_pos = pred_cell_grid.shape[0] * pred_cell_grid.shape[1]
    num_true = true_cell_grid.shape[0] * true_cell_grid.shape[1]

    true_row_nums, pred_row_nums, row_pos_match_score = align_2d_outer(true_cell_grid.shape[:2],
                                                                pred_cell_grid.shape[:2],
                                                                pre_computed_rewards)

    true_column_nums, pred_column_nums, col_pos_match_score = align_2d_outer(true_cell_grid.shape[:2][::-1],
                                                                         pred_cell_grid.shape[:2][::-1],
                                                                         transpose_rewards)

    pos_match_score_upper_bound =  min(row_pos_match_score, col_pos_match_score)
    upper_bound_score, _, _ = compute_fscore(pos_match_score_upper_bound, num_pos, num_true)

    positive_match_score = 0
    for true_row_num, pred_row_num in zip(true_row_nums, pred_row_nums):
        for true_column_num, pred_column_num in zip(true_column_nums, pred_column_nums):
            positive_match_score += pre_computed_rewards[(true_row_num, true_column_num, pred_row_num, pred_column_num)]

    fscore, precision, recall = compute_fscore(positive_match_score,
                                               num_true,
                                               num_pos)
    
    return fscore, precision, recall, upper_bound_score


def lcs_similarity(string1, string2):
    if len(string1) == 0 and len(string2) == 0:
        return 1
    s = SequenceMatcher(None, string1, string2)
    lcs = ''.join([string1[block.a:(block.a + block.size)] for block in s.get_matching_blocks()])
    return 2*len(lcs)/(len(string1)+len(string2))


def iou(bbox1, bbox2):
    """
    Compute the intersection-over-union of two bounding boxes.
    """
    intersection = Rect(bbox1).intersect(bbox2)
    union = Rect(bbox1).include_rect(bbox2)
    
    union_area = union.get_area()
    if union_area > 0:
        return intersection.get_area() / union.get_area()
    
    return 0


def cells_to_grid(cells, key='bbox'):
    """
    Convert from a list of cells to a matrix of grid cell features.
    This matrix representation is the input to GriTS.

    For key, use:
    - 'bbox' for computing GriTS_Loc
    - 'cell_text' for computing GriTS_Con
    """
    if len(cells) == 0:
        return [[]]
    num_rows = max([max(cell['row_nums']) for cell in cells])+1
    num_columns = max([max(cell['column_nums']) for cell in cells])+1
    cell_grid = np.zeros((num_rows, num_columns)).tolist()
    for cell in cells:
        for row_num in cell['row_nums']:
            for column_num in cell['column_nums']:
                cell_grid[row_num][column_num] = cell[key]
                
    return cell_grid


def cells_to_relspan_grid(cells):
    """
    Convert from a list of cells to the matrix of grid cell features
    used for computing GriTS_Top.
    """
    if len(cells) == 0:
        return [[]]
    num_rows = max([max(cell['row_nums']) for cell in cells])+1
    num_columns = max([max(cell['column_nums']) for cell in cells])+1
    cell_grid = np.zeros((num_rows, num_columns)).tolist()
    for cell in cells:
        min_row_num = min(cell['row_nums'])
        min_column_num = min(cell['column_nums'])
        max_row_num = max(cell['row_nums']) + 1
        max_column_num = max(cell['column_nums']) + 1
        for row_num in cell['row_nums']:
            for column_num in cell['column_nums']:
                cell_grid[row_num][column_num] = [
                    min_column_num - column_num,
                    min_row_num - row_num,
                    max_column_num - column_num,
                    max_row_num - row_num, 
                ]
                
    return cell_grid 


def get_spanning_cell_rows_and_columns(spanning_cells, rows, columns):
    """
    Determine which grid cell locations (row-column) each spanning cell
    corresponds to.
    """
    matches_by_spanning_cell = []
    all_matches = set()
    for spanning_cell in spanning_cells:
        row_matches = set()
        column_matches = set()
        for row_num, row in enumerate(rows):
            bbox1 = [
                spanning_cell['bbox'][0], row['bbox'][1], spanning_cell['bbox'][2],
                row['bbox'][3]
            ]
            bbox2 = Rect(spanning_cell['bbox']).intersect(bbox1)
            if bbox2.get_area() / Rect(bbox1).get_area() >= 0.5:
                row_matches.add(row_num)
        for column_num, column in enumerate(columns):
            bbox1 = [
                column['bbox'][0], spanning_cell['bbox'][1], column['bbox'][2],
                spanning_cell['bbox'][3]
            ]
            bbox2 = Rect(spanning_cell['bbox']).intersect(bbox1)
            if bbox2.get_area() / Rect(bbox1).get_area() >= 0.5:
                column_matches.add(column_num)
        already_taken = False
        this_matches = []
        for row_num in row_matches:
            for column_num in column_matches:
                this_matches.append((row_num, column_num))
                if (row_num, column_num) in all_matches:
                    already_taken = True
        if not already_taken:
            for match in this_matches:
                all_matches.add(match)
            matches_by_spanning_cell.append(this_matches)
            row_nums = [elem[0] for elem in this_matches]
            column_nums = [elem[1] for elem in this_matches]
            row_rect = Rect()
            for row_num in row_nums:
                row_rect.include_rect(rows[row_num]['bbox'])
            column_rect = Rect()
            for column_num in column_nums:
                column_rect.include_rect(columns[column_num]['bbox'])
            spanning_cell['bbox'] = list(row_rect.intersect(column_rect))
        else:
            matches_by_spanning_cell.append([])

    return matches_by_spanning_cell


def output_to_dilatedbbox_grid(bboxes, labels, scores):
    """
    Compute the matrix of grid cell features for GriTS_Loc but using the raw predicted
    and ground truth bounding boxes, not the post-processed boxes.

    In the case of the model used in the PubTables-1M paper, these boxes are
    *dilated*, which means they are larger than the actual ground truth boxes.

    Computing GriTS_Loc with dilated bounding boxes is probably not very useful
    for model comparison but could be useful for understanding the behavior of
    an individual model.
    """
    rows = [{'bbox': bbox} for bbox, label in zip(bboxes, labels) if label == 2]
    columns = [{'bbox': bbox} for bbox, label in zip(bboxes, labels) if label == 1]
    spanning_cells = [{'bbox': bbox, 'score': 1} for bbox, label in zip(bboxes, labels) if label in [4, 5]]
    rows.sort(key=lambda x: x['bbox'][1]+x['bbox'][3])
    columns.sort(key=lambda x: x['bbox'][0]+x['bbox'][2])
    spanning_cells.sort(key=lambda x: -x['score'])
    cell_grid = []
    for row_num, row in enumerate(rows):
        column_grid = []
        for column_num, column in enumerate(columns):
            bbox = Rect(row['bbox']).intersect(column['bbox'])
            column_grid.append(list(bbox))
        cell_grid.append(column_grid)
    matches_by_spanning_cell = get_spanning_cell_rows_and_columns(spanning_cells, rows, columns)
    for matches, spanning_cell in zip(matches_by_spanning_cell, spanning_cells):
        for match in matches:
            cell_grid[match[0]][match[1]] = spanning_cell['bbox']
    
    return cell_grid


def grits_top(true_relative_span_grid, pred_relative_span_grid):
    """
    Compute GriTS_Top given two matrices of cell relative spans.

    For the cell at grid location (i,j), let a(i,j) be its rowspan,
    let β(i,j) be its colspan, let p(i,j) be the minimum row it occupies,
    and let θ(i,j) be the minimum column it occupies. Its relative span is
    bounding box [θ(i,j)-j, p(i,j)-i, θ(i,j)-j+β(i,j), p(i,j)-i+a(i,j)].

    It gives the size and location of the cell each grid cell belongs to
    relative to the current grid cell location, in grid coordinate units.
    Note that for a non-spanning cell this will always be [0, 0, 1, 1].
    """
    return factored_2dmss(true_relative_span_grid,
                          pred_relative_span_grid,
                          reward_function=iou)


def grits_loc(true_bbox_grid, pred_bbox_grid):
    """
    Compute GriTS_Loc given two matrices of cell bounding boxes.
    """
    return factored_2dmss(true_bbox_grid,
                          pred_bbox_grid,
                          reward_function=iou)


def grits_con(true_text_grid, pred_text_grid):
    """
    Compute GriTS_Con given two matrices of cell text strings.
    """
    return factored_2dmss(true_text_grid,
                          pred_text_grid,
                          reward_function=lcs_similarity)


def html_to_cells(table_html):
    """
    Parse an HTML representation of a table into a list of cells.
    """
    try:
        tree = ET.fromstring(table_html)
    except Exception as e:
        print(e)
        return None
    
    table_cells = []
    
    occupied_columns_by_row = defaultdict(set)
    current_row = -1

    # Get all td tags
    stack = []
    stack.append((tree, False))
    while len(stack) > 0:
        current, in_header = stack.pop()

        if current.tag == 'tr':
            current_row += 1
            
        if current.tag == 'td' or current.tag =='th':
            if "colspan" in current.attrib:
                colspan = int(current.attrib["colspan"])
            else:
                colspan = 1
            if "rowspan" in current.attrib:
                rowspan = int(current.attrib["rowspan"])
            else:
                rowspan = 1
            row_nums = list(range(current_row, current_row + rowspan))
            try:
                max_occupied_column = max(occupied_columns_by_row[current_row])
                current_column = min(set(range(max_occupied_column+2)).difference(occupied_columns_by_row[current_row]))
            except:
                current_column = 0
            column_nums = list(range(current_column, current_column + colspan))
            for row_num in row_nums:
                occupied_columns_by_row[row_num].update(column_nums)
                
            cell_dict = dict()
            cell_dict['row_nums'] = row_nums
            cell_dict['column_nums'] = column_nums
            cell_dict['is_column_header'] = current.tag == 'th' or in_header
            cell_dict['cell_text'] = ' '.join(current.itertext())
            table_cells.append(cell_dict)

        children = list(current)
        for child in children[::-1]:
            stack.append((child, in_header or current.tag == 'th' or current.tag == 'thead'))
    
    return table_cells


def grits_from_html(true_html, pred_html):
    """
    Compute GriTS_Con and GriTS_Top for two HTML sequences.
    """

    metrics = {}

    # Convert HTML to list of cells
    true_cells = html_to_cells(true_html)
    pred_cells = html_to_cells(pred_html)

    # Convert lists of cells to matrices of grid cells
    true_topology_grid = np.array(cells_to_relspan_grid(true_cells))
    pred_topology_grid = np.array(cells_to_relspan_grid(pred_cells))
    true_text_grid = np.array(cells_to_grid(true_cells, key='cell_text'), dtype=object)
    pred_text_grid = np.array(cells_to_grid(pred_cells, key='cell_text'), dtype=object)

    # Compute GriTS_Top (topology) for ground truth and predicted matrices
    (metrics['grits_top'],
     metrics['grits_precision_top'],
     metrics['grits_recall_top'],
     metrics['grits_top_upper_bound']) = grits_top(true_topology_grid,
                                                   pred_topology_grid)

    # Compute GriTS_Con (text content)  for ground truth and predicted matrices
    (metrics['grits_con'],
     metrics['grits_precision_con'],
     metrics['grits_recall_con'],
     metrics['grits_con_upper_bound']) = grits_con(true_text_grid,
                                                   pred_text_grid)

    return metrics