Spaces:
Runtime error
Runtime error
File size: 80,772 Bytes
3ac1768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 |
"""
Copyright (C) 2023 Microsoft Corporation
USAGE NOTES:
This code is our best attempt to piece together the code that was used to create PubTables-1M.
(PubTables-1M was originally created in multiple stages, not all in one script.)
This script processes pairs of PDF and NXML files in the PubMed Open Access corpus.
These need to be downloaded first.
Download tar.gz files from the FTP site:
https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_package/
Please pay attention to licensing. See the PubMed Central website for more information on
how to ensure you download data licensed for commercial use, if that is your need.
Before running this script, place the downloaded files in the same directory and unzip them.
This should create a collection of subdirectories each starting with "PMC..." like so:
parent_folder\
- PMC1234567\
- same_name.pdf
- same_name.nxml
- PMC2345678\
- PMC3456789\
Note that this script has a timeout for each file and skips ones that take too long to process.
If you use this code in your published work, we ask that you please cite our PubTables-1M paper
and table-transformer GitHub repo.
TODO:
- Add code for making or incorporating a train/test/val split
- Change the table padding for the test and val splits
"""
import os
import re
import xml.etree.ElementTree as ET
from xml.dom import minidom
import json
import functools
from collections import defaultdict
import traceback
import signal
import argparse
from PIL import Image
import numpy as np
import fitz
from fitz import Rect
import editdistance
class timeout:
def __init__(self, seconds=1, error_message='Timeout'):
self.seconds = seconds
self.error_message = error_message
def handle_timeout(self, signum, frame):
raise TimeoutError(self.error_message)
def __enter__(self):
signal.signal(signal.SIGALRM, self.handle_timeout)
signal.alarm(self.seconds)
def __exit__(self, type, value, traceback):
signal.alarm(0)
def read_xml(nxml_filepath):
'''
Read in XML as a string.
'''
with open(nxml_filepath, 'r') as file:
xml_string = file.read()
return xml_string
def read_pdf(pdf_filepath):
'''
Read in PDF file as a PyMyPDF doc.
'''
doc = fitz.open(pdf_filepath)
return doc
def compare_meta(word1, word2):
'''
For ordering words according to *some* reading order within the PDF.
'''
if word1[5] < word2[5]:
return -1
if word1[5] > word2[5]:
return 1
if word1[6] < word2[6]:
return -1
if word1[6] > word2[6]:
return 1
if word1[7] < word2[7]:
return -1
if word1[7] > word2[7]:
return 1
return 0
def get_page_words(page):
"""
Extract the words from the page, with bounding boxes,
as well as loose layout and style information.
"""
words = []
for text_word in page.get_text_words():
word = {'bbox': list(text_word[:4]),
'text': text_word[4],
'block_num': text_word[5],
'line_num': text_word[6],
'span_num': text_word[7],
'flags': 0}
words.append(word)
return words
def overlaps(bbox1, bbox2, threshold=0.5):
"""
Test if more than "threshold" fraction of bbox1 overlaps with bbox2.
"""
rect1 = Rect(bbox1)
area1 = rect1.get_area()
if area1 == 0:
return False
return rect1.intersect(bbox2).get_area()/area1 >= threshold
def get_bbox_span_subset(spans, bbox, threshold=0.5):
"""
Reduce the set of spans to those that fall within a bounding box.
threshold: the fraction of the span that must overlap with the bbox.
"""
span_subset = []
for span in spans:
if overlaps(span['bbox'], bbox, threshold):
span_subset.append(span)
return span_subset
def extract_text_from_spans(spans, join_with_space=True, remove_integer_superscripts=True):
"""
Convert a collection of page tokens/words/spans into a single text string.
"""
if join_with_space:
join_char = " "
else:
join_char = ""
spans_copy = spans[:]
if remove_integer_superscripts:
for span in spans:
flags = span['flags']
if flags & 2**0: # superscript flag
if is_int(span['text']):
spans_copy.remove(span)
else:
span['superscript'] = True
if len(spans_copy) == 0:
return ""
spans_copy.sort(key=lambda span: span['span_num'])
spans_copy.sort(key=lambda span: span['line_num'])
spans_copy.sort(key=lambda span: span['block_num'])
# Force the span at the end of every line within a block to have exactly one space
# unless the line ends with a space or ends with a non-space followed by a hyphen
line_texts = []
line_span_texts = [spans_copy[0]['text']]
for span1, span2 in zip(spans_copy[:-1], spans_copy[1:]):
if not span1['block_num'] == span2['block_num'] or not span1['line_num'] == span2['line_num']:
line_text = join_char.join(line_span_texts).strip()
if (len(line_text) > 0
and not line_text[-1] == ' '
and not (len(line_text) > 1 and line_text[-1] == "-" and not line_text[-2] == ' ')):
if not join_with_space:
line_text += ' '
line_texts.append(line_text)
line_span_texts = [span2['text']]
else:
line_span_texts.append(span2['text'])
line_text = join_char.join(line_span_texts)
line_texts.append(line_text)
return join_char.join(line_texts).strip()
def extract_text_inside_bbox(spans, bbox):
"""
Extract the text inside a bounding box.
"""
bbox_spans = get_bbox_span_subset(spans, bbox)
bbox_text = extract_text_from_spans(bbox_spans, remove_integer_superscripts=False)
return bbox_text, bbox_spans
def extract_table_xmls_from_document(xml_string):
table_dicts = []
table_starts = [m.start() for m in re.finditer("<table-wrap |<table-wrap>", xml_string)]
table_ends = [m.end() for m in re.finditer("</table-wrap>", xml_string)]
if not len(table_starts) == len(table_ends):
print("Could not match up all table-wrap begins and ends")
return None
for table_start, table_end in zip(table_starts, table_ends):
table_dict = {}
table_dict['xml_table_wrap_start_character_index'] = table_start
table_dict['xml_table_wrap_end_character_index'] = table_end
table_dicts.append(table_dict)
return table_dicts
def parse_xml_table(xml_string, table_dict):
start_index = table_dict['xml_table_wrap_start_character_index']
end_index = table_dict['xml_table_wrap_end_character_index']
table_xml = xml_string[start_index:end_index]
table_dict['xml_markup'] = table_xml
try:
table_xml = table_xml.replace("xlink:", "") # these break the xml parser
tree = ET.fromstring(table_xml)
except Exception as e:
print(e)
return None
table_cells = []
occupied_columns_by_row = defaultdict(set)
current_row = -1
caption_text = []
# Initialize empty values
table_dict['xml_tablewrap_raw_text'] = ""
table_dict['xml_table_raw_text'] = ""
table_dict['xml_graphic_filename'] = ""
table_dict['xml_table_footer_text'] = ""
table_dict['xml_caption_label_text'] = ""
table_dict['xml_caption_text'] = ""
# Get all td tags
stack = []
stack.append((tree, False))
while len(stack) > 0:
current, in_header = stack.pop()
if current.tag == 'table-wrap':
table_dict['xml_tablewrap_raw_text'] = ' '.join([elem.strip() for elem in current.itertext()]).strip()
if current.tag == 'table':
table_dict['xml_table_raw_text'] = ' '.join([elem.strip() for elem in current.itertext()]).strip()
if current.tag == 'graphic':
try:
table_dict['xml_graphic_filename'] = current.attrib['href']
except:
pass
if current.tag == 'table-wrap-foot':
table_dict['xml_table_footer_text'] = ''.join(current.itertext()).strip()
if current.tag == 'label':
table_dict['xml_caption_label_text'] = ''.join(current.itertext()).strip()
if current.tag == 'caption':
table_dict['xml_caption_text'] = ''.join(current.itertext()).strip()
if current.tag == 'tr':
current_row += 1
if current.tag == 'td' or current.tag =='th':
if "colspan" in current.attrib:
colspan = int(current.attrib["colspan"])
else:
colspan = 1
if "rowspan" in current.attrib:
rowspan = int(current.attrib["rowspan"])
else:
rowspan = 1
row_nums = list(range(current_row, current_row + rowspan))
try:
max_occupied_column = max(occupied_columns_by_row[current_row])
current_column = min(set(range(max_occupied_column+2)).difference(occupied_columns_by_row[current_row]))
except:
current_column = 0
column_nums = list(range(current_column, current_column + colspan))
for row_num in row_nums:
occupied_columns_by_row[row_num].update(column_nums)
if "align" in current.attrib:
align = current.attrib["align"]
else:
align = "unknown"
if "style" in current.attrib:
style = current.attrib["style"]
else:
style = "none"
graphics = [child for child in current if child.tag == 'graphic']
graphics_filenames = [graphic.attrib['href'] for graphic in graphics if "href" in graphic.attrib]
raw_text = ''.join(current.itertext())
text = ' '.join([elem.strip() for elem in current.itertext()])
cell_dict = dict()
cell_dict['row_nums'] = row_nums
cell_dict['column_nums'] = column_nums
cell_dict['is_column_header'] = current.tag == 'th' or in_header
cell_dict['align'] = align
cell_dict['style'] = style
# tab or space or padding
if (raw_text.startswith("\u2003") or raw_text.startswith("\u0020")
or raw_text.startswith("\t") or raw_text.startswith(" ")
or "padding-left" in style):
cell_dict['indented'] = True
else:
cell_dict['indented'] = False
cell_dict['xml_text_content'] = text
cell_dict['xml_raw_text_content'] = raw_text
cell_dict['xml_graphics_filenames'] = graphics_filenames
#cell_dict['pdf'] = {}
table_cells.append(cell_dict)
children = list(current)
for child in children[::-1]:
stack.append((child, in_header or current.tag == 'th' or current.tag == 'thead'))
#table_dict['rows'] = [{} for entry in range(row_num + 1)]
#table_dict['columns'] = [{} for entry in range(num_cols)]
if len(occupied_columns_by_row) > 0:
table_dict['num_rows'] = max(occupied_columns_by_row) + 1
table_dict['num_columns'] = max([max(elems) for row_num, elems in occupied_columns_by_row.items()]) + 1
else:
table_dict['num_rows'] = 0
table_dict['num_columns'] = 0
table_dict['cells'] = table_cells
return table_dict
# For traceback: -1 = up, 1 = left, 0 = diag up-left
def align(page_string="", table_string="", match_reward=2, mismatch_penalty=-5, new_gap_penalty=-2,
continue_gap_penalty=-0.05, page_boundary_gap_reward=0.01, gap_not_after_space_penalty=-1,
score_only=False, gap_character='_'):
scores = np.zeros((len(page_string) + 1, len(table_string) + 1))
pointers = np.zeros((len(page_string) + 1, len(table_string) + 1))
# Initialize first column
for row_idx in range(1, len(page_string) + 1):
scores[row_idx, 0] = scores[row_idx - 1, 0] + page_boundary_gap_reward
pointers[row_idx, 0] = -1
# Initialize first row
for col_idx in range(1, len(table_string) + 1):
#scores[0, col_idx] = scores[0, col_idx - 1] + 0
pointers[0, col_idx] = 1
for row_idx in range(1, len(page_string) + 1):
for col_idx in range(1, len(table_string) + 1):
if page_string[row_idx - 1] == table_string[col_idx - 1]:
diag_score = scores[row_idx - 1, col_idx - 1] + match_reward
else:
diag_score = scores[row_idx - 1, col_idx - 1] + mismatch_penalty
if pointers[row_idx, col_idx - 1] == 1:
same_row_score = scores[row_idx, col_idx - 1] + continue_gap_penalty
else:
same_row_score = scores[row_idx, col_idx - 1] + new_gap_penalty
if not table_string[col_idx - 1] == ' ':
same_row_score += gap_not_after_space_penalty
if col_idx == len(table_string):
same_col_score = scores[row_idx - 1, col_idx] + page_boundary_gap_reward
elif pointers[row_idx - 1, col_idx] == -1:
same_col_score = scores[row_idx - 1, col_idx] + continue_gap_penalty
else:
same_col_score = scores[row_idx - 1, col_idx] + new_gap_penalty
if not page_string[row_idx - 1] == ' ':
same_col_score += gap_not_after_space_penalty
max_score = max(diag_score, same_col_score, same_row_score)
scores[row_idx, col_idx] = max_score
if diag_score == max_score:
pointers[row_idx, col_idx] = 0
elif same_col_score == max_score:
pointers[row_idx, col_idx] = -1
else:
pointers[row_idx, col_idx] = 1
#print(scores[:, -1])
#print(pointers)
score = scores[len(page_string), len(table_string)]
if score_only:
return score
cur_row = len(page_string)
cur_col = len(table_string)
aligned_page_string = ""
aligned_table_string = ""
while not (cur_row == 0 and cur_col == 0):
if pointers[cur_row, cur_col] == -1:
cur_row -= 1
aligned_table_string += gap_character
aligned_page_string += page_string[cur_row]
elif pointers[cur_row, cur_col] == 1:
cur_col -= 1
aligned_page_string += gap_character
aligned_table_string += table_string[cur_col]
else:
cur_row -= 1
cur_col -= 1
aligned_table_string += table_string[cur_col]
aligned_page_string += page_string[cur_row]
aligned_page_string = aligned_page_string[::-1]
aligned_table_string = aligned_table_string[::-1]
alignment = [aligned_page_string, aligned_table_string]
return alignment, score
def get_table_page_fast(doc, table):
table_words = table['xml_tablewrap_raw_text'].split(" ")
table_words_set = set(table_words)
table_text = " ".join(table_words)
candidate_page_nums = []
scores = [0 for page in doc]
for page_num, page in enumerate(doc):
page_words_set = set([word[4] for word in page.get_text_words()])
scores[page_num] = len(table_words_set.intersection(page_words_set))
table_page = int(np.argmax(scores))
return table_page, scores
def get_table_page_slow(doc, table, candidate_page_nums=None):
table_words = []
table_text = table['xml_tablewrap_raw_text']
if not candidate_page_nums:
candidate_page_nums = range(len(doc))
scores = [0 for page_num in candidate_page_nums]
for idx, page in enumerate(candidate_page_nums):
page = doc[candidate_page_nums[idx]]
page_words = page.get_text_words()
sorted_words = sorted(page_words, key=functools.cmp_to_key(compare_meta))
page_text = " ".join([word[4] for word in sorted_words])
X = page_text.replace("~", "^")
Y = table_text.replace("~", "^")
score = align(X, Y, match_reward=2, mismatch_penalty=-2, new_gap_penalty=-10,
continue_gap_penalty = -0.0005, page_boundary_gap_reward = 0.0001, score_only=True,
gap_character='~')
scores[idx] = score
table_page = candidate_page_nums[int(np.argmax(scores))]
return table_page, scores
def get_table_page(doc, table):
table_page_num, scores = get_table_page_fast(doc, table)
max_score = max(scores)
candidate_page_nums = []
for idx, score in enumerate(scores):
if score >= max_score / 2:
candidate_page_nums.append(idx)
if len(candidate_page_nums) > 1:
table_page_num, scores = get_table_page_slow(doc, table,
candidate_page_nums=candidate_page_nums)
return table_page_num, scores
def locate_table(page, table):
words = page.get_text_words()
sorted_words = sorted(words, key=functools.cmp_to_key(compare_meta))
page_text = " ".join([word[4] for word in sorted_words])
page_text_source = []
for num, word in enumerate(sorted_words):
for c in word[4]:
page_text_source.append(num)
page_text_source.append(None)
page_text_source = page_text_source[:-1]
table_text = " ".join([entry['xml_text_content'].strip() for entry in table['cells']])
table_text_source = []
for num, cell in enumerate(table['cells']):
for c in cell['xml_text_content'].strip():
table_text_source.append(num)
table_text_source.append(None)
table_text_source = table_text_source[:-1]
X = page_text.replace("~", "^")
Y = table_text.replace("~", "^")
match_reward = 3
mismatch_penalty = -2
new_gap_penalty = -10
continue_gap_penalty = -0.05
page_boundary_gap_reward = 0.2
alignment, score = align(X, Y, match_reward=match_reward, mismatch_penalty=mismatch_penalty,
new_gap_penalty=new_gap_penalty, continue_gap_penalty=continue_gap_penalty,
page_boundary_gap_reward=page_boundary_gap_reward, score_only=False,
gap_character='~')
table_words = set()
column_words = dict()
row_words = dict()
cell_words = dict()
page_count = 0
table_count = 0
for char1, char2 in zip(alignment[0], alignment[1]):
if not char1 == "~":
if char1 == char2:
table_words.add(page_text_source[page_count])
cell_num = table_text_source[table_count]
if not cell_num is None:
if cell_num in cell_words:
cell_words[cell_num].add(page_text_source[page_count])
else:
cell_words[cell_num] = set([page_text_source[page_count]])
page_count += 1
if not char2 == "~":
table_count += 1
inliers = []
for word_num in table_words:
if word_num:
inliers.append(sorted_words[word_num])
if len(inliers) == 0:
return None, None
cell_bboxes = {}
for cell_num, cell in enumerate(table['cells']):
cell_bbox = None
if cell_num in cell_words:
for word_num in cell_words[cell_num]:
if word_num:
word_bbox = sorted_words[word_num][0:4]
if not cell_bbox:
cell_bbox = [entry for entry in word_bbox]
else:
cell_bbox[0] = min(cell_bbox[0], word_bbox[0])
cell_bbox[1] = min(cell_bbox[1], word_bbox[1])
cell_bbox[2] = max(cell_bbox[2], word_bbox[2])
cell_bbox[3] = max(cell_bbox[3], word_bbox[3])
cell_bboxes[cell_num] = cell_bbox
return cell_bboxes, inliers
def locate_caption(page, caption):
words = page.get_text_words()
sorted_words = sorted(words, key=functools.cmp_to_key(compare_meta))
page_text = " ".join([word[4] for word in sorted_words])
page_text_source = []
for num, word in enumerate(sorted_words):
for c in word[4]:
page_text_source.append(num)
page_text_source.append(None)
X = page_text.replace("~", "^")
Y = caption.replace("~", "^")
match_reward = 3
mismatch_penalty = -2
new_gap_penalty = -10
continue_gap_penalty = -0.05
page_boundary_gap_reward = 0.2
alignment, score = align(X, Y, match_reward=match_reward, mismatch_penalty=mismatch_penalty,
new_gap_penalty=new_gap_penalty, continue_gap_penalty=continue_gap_penalty,
page_boundary_gap_reward=page_boundary_gap_reward, score_only=False,
gap_character='~')
matching_words = set()
count = 0
for char1, char2 in zip(alignment[0], alignment[1]):
if not char1 == "~":
if char1 == char2:
matching_words.add(page_text_source[count])
count += 1
inliers = []
for word_num in matching_words:
if word_num:
inliers.append(sorted_words[word_num])
if len(inliers) == 0:
return [], []
bbox = list(inliers[0][0:4])
for word in inliers[1:]:
bbox[0] = min(bbox[0], word[0])
bbox[1] = min(bbox[1], word[1])
bbox[2] = max(bbox[2], word[2])
bbox[3] = max(bbox[3], word[3])
return bbox, inliers
def is_portrait(page, bbox):
if bbox:
bbox = fitz.Rect(bbox)
else:
bbox = page.rect
portrait_count = 0
landscape_count = 0
page_dict = page.get_text("dict")
for block in page_dict['blocks']:
if 'lines' in block:
for line in block['lines']:
line_bbox = fitz.Rect(line['bbox'])
if bbox and line_bbox in bbox:
direction = line['dir']
if direction[0] == 1 and direction[1] == 0:
portrait_count += 1
elif direction[0] == 0 and direction[1] == -1:
landscape_count += 1
return portrait_count >= landscape_count
def save_full_tables_annotation(tables, document_annotation_filepath):
# Remove "word_bboxes" field
for table_dict in tables:
if 'pdf_word_bboxes' in table_dict:
del table_dict['pdf_word_bboxes']
if 'pdf_caption_word_bboxes' in table_dict:
del table_dict['pdf_caption_word_bboxes']
with open(document_annotation_filepath, 'w', encoding='utf-8') as outfile:
json.dump(tables, outfile, ensure_ascii=False, indent=4)
# Attempt to fix the caption and footer
# 1. Caption should encompass all of the "lines" that intersect the caption.
# 2. Footer should encompass all of the "blocks" that intersect the footer.
def fix_caption_and_footer(doc, table_dict):
try:
page = doc[table_dict['pdf_page_index']]
except:
return
text = page.get_text('dict')
blocks = text['blocks']
block_bboxes = [block['bbox'] for block in blocks]
try:
caption_block_bboxes = []
caption_bbox = table_dict['pdf_caption_bbox']
for bbox in block_bboxes:
if Rect(bbox).intersects(caption_bbox):
caption_block_bboxes.append(bbox)
caption_rect = Rect(caption_bbox)
for bbox in caption_block_bboxes:
caption_rect.include_rect(bbox)
table_dict['pdf_caption_bbox'] = list(caption_rect)
except:
pass
try:
footer_block_bboxes = []
footer_bbox = table_dict['pdf_table_footer_bbox']
for bbox in block_bboxes:
if Rect(bbox).intersects(footer_bbox):
footer_block_bboxes.append(bbox)
footer_rect = Rect(footer_bbox)
for bbox in footer_block_bboxes:
footer_rect.include_rect(bbox)
table_dict['pdf_table_footer_bbox'] = list(footer_rect)
except:
pass
try:
table_wrap_rect = Rect(table_dict['pdf_table_wrap_bbox'])
try:
table_wrap_rect.include_rect(footer_rect)
except:
pass
try:
table_wrap_rect.include_rect(caption_rect)
except:
pass
table_dict['pdf_table_wrap_bbox'] = list(table_wrap_rect)
except:
pass
def clean_xml_annotation(table_dict):
num_columns = table_dict['num_columns']
num_rows = table_dict['num_rows']
header_rows = set()
for cell in table_dict['cells']:
if cell['is_column_header']:
header_rows = header_rows.union(set(cell['row_nums']))
num_header_rows = len(header_rows)
#---REMOVE EMPTY ROWS---
has_content_by_row = defaultdict(bool)
for cell in table_dict['cells']:
has_content = len(cell['xml_text_content'].strip()) > 0
for row_num in cell['row_nums']:
has_content_by_row[row_num] = has_content_by_row[row_num] or has_content
table_dict['section_last_rows'] = [num_header_rows-1]
row_count = num_header_rows
for row_num in range(num_header_rows+1, num_rows):
if not has_content_by_row[row_num]:
table_dict['section_last_rows'].append(row_count)
else:
row_count += 1
row_num_corrections = np.cumsum([int(not has_content_by_row[row_num]) for row_num in range(num_rows)]).tolist()
cells_to_delete = []
for cell in table_dict['cells']:
new_row_nums = []
for row_num in cell['row_nums']:
if has_content_by_row[row_num]:
new_row_nums.append(row_num - row_num_corrections[row_num])
cell['row_nums'] = new_row_nums
if len(new_row_nums) == 0:
cells_to_delete.append(cell)
for cell in cells_to_delete:
table_dict['cells'].remove(cell)
table_dict["num_rows"] = sum([int(elem) for idx, elem in has_content_by_row.items()])
#---REMOVE EMPTY COLUMNS---
has_content_by_column = defaultdict(bool)
for cell in table_dict['cells']:
has_content = len(cell['xml_text_content'].strip()) > 0
for column_num in cell['column_nums']:
has_content_by_column[column_num] = has_content_by_column[column_num] or has_content
column_num_corrections = np.cumsum([int(not has_content_by_column[column_num]) for column_num in range(num_columns)]).tolist()
cells_to_delete = []
for cell in table_dict['cells']:
new_column_nums = []
for column_num in cell['column_nums']:
if has_content_by_column[column_num]:
new_column_nums.append(column_num - column_num_corrections[column_num])
cell['column_nums'] = new_column_nums
if len(new_column_nums) == 0:
cells_to_delete.append(cell)
for cell in cells_to_delete:
table_dict['cells'].remove(cell)
table_dict["num_columns"] = sum([int(elem) for idx, elem in has_content_by_column.items()])
def standardize_and_fix_xml_annotation(table_dict):
num_columns = table_dict['num_columns']
num_rows = table_dict['num_rows']
#---IF FIRST ROW HAS CELL WITH COLSPAN > 1, MUST BE A HEADER
first_row_has_colspan = False
for cell in table_dict['cells']:
if 0 in cell['row_nums'] and len(cell['column_nums']) > 1:
first_row_has_colspan = True
if first_row_has_colspan:
for cell in table_dict['cells']:
if 0 in cell['row_nums']:
cell['is_column_header'] = True
#---STANDARDIZE HEADERS: HEADERS END WITH A ROW WITH NO SUPERCELLS---
cell_counts_by_row = defaultdict(int)
header_status_by_row = defaultdict(bool)
for cell in table_dict['cells']:
for row_num in cell['row_nums']:
if len(cell['xml_text_content'].strip()) == 0:
cell_count = len(cell['column_nums'])
else:
cell_count = 1
cell_counts_by_row[row_num] += cell_count
if cell['is_column_header']:
header_status_by_row[row_num] = True
true_header_status_by_row = defaultdict(bool)
if header_status_by_row[0]:
for row_num in range(num_rows):
true_header_status_by_row[row_num] = True
if cell_counts_by_row[row_num] == num_columns:
break
true_header_rows = set([row_num for row_num, header_status in true_header_status_by_row.items() if header_status])
for cell in table_dict['cells']:
cell['is_column_header'] = len(set(cell['row_nums']).intersection(true_header_rows)) > 0
#---STANDARDIZE HEADERS: IF FIRST COLUMN IN HEADER IS BLANK, HEADER CONTINUES UNTIL NON-BLANK CELL---
min_nonblank_first_column_row = num_rows
header_rows = set()
for cell in table_dict['cells']:
if cell['is_column_header']:
for row_num in cell['row_nums']:
header_rows.add(row_num)
if 0 in cell['column_nums'] and len(cell['xml_text_content'].strip()) > 0:
min_nonblank_first_column_row = min(min_nonblank_first_column_row, min(cell['row_nums']))
if len(header_rows) > 0 and min_nonblank_first_column_row > max(header_rows) + 1:
header_rows = set(range(min_nonblank_first_column_row))
for cell in table_dict['cells']:
if header_rows & set(cell['row_nums']):
cell['is_column_header'] = True
#---STANDARDIZE PROJECTED ROW HEADERS: ABSORB BLANK CELLS INTO NON-BLANK CELLS---
non_projected_row_header_status_by_row = defaultdict(bool)
first_cell_by_row = dict()
cells_to_delete = []
for cell in table_dict['cells']:
# If there is a non-blank cell after the first column in the body, can't be a projected row header
if (not cell['is_column_header'] and len(cell['xml_text_content'].strip()) > 0
and min(cell['column_nums']) > 0 and len(cell['row_nums']) == 1):
non_projected_row_header_status_by_row[cell['row_nums'][0]] = True
# Note the first cell in each row, if it's not a supercell
elif len(cell['xml_text_content'].strip()) > 0 and min(cell['column_nums']) == 0 and len(cell['row_nums']) == 1:
first_cell_by_row[cell['row_nums'][0]] = cell
for cell in table_dict['cells']:
if (not cell['is_column_header'] and len(cell['xml_text_content'].strip()) == 0
and min(cell['column_nums']) > 0 and len(cell['row_nums']) == 1):
try:
row_num = cell['row_nums'][0]
if non_projected_row_header_status_by_row[row_num]:
continue
cell_to_join_with = first_cell_by_row[row_num]
cell_to_join_with['pdf_bbox'] = list(
Rect(cell_to_join_with['pdf_bbox']).include_rect(cell['pdf_bbox']))
cell_to_join_with['column_nums'] = list(set(cell_to_join_with['column_nums'] + cell['column_nums']))
cells_to_delete.append(cell)
except:
pass
for cell in cells_to_delete:
table_dict['cells'].remove(cell)
#---LABEL PROJECTED ROW HEADERS---
for cell in table_dict['cells']:
if not cell['is_column_header'] and len(cell['column_nums']) == num_columns:
cell['is_projected_row_header'] = True
else:
cell['is_projected_row_header'] = False
#---STANDARDIZE SUPERCELLS IN FIRST COLUMN: ABSORB BLANK CELLS INTO NON-BLANK CELLS---
first_column_cells_with_content_by_row = dict()
# Determine cells with content
for cell in table_dict['cells']:
if 0 in cell['column_nums']:
if len(cell['xml_text_content'].strip()) == 0:
continue
for row_num in cell['row_nums']:
first_column_cells_with_content_by_row[row_num] = cell
# For cells without content, determine cell to combine with
cells_to_delete = []
for cell in table_dict['cells']:
if 0 in cell['column_nums']:
if len(cell['xml_text_content'].strip()) == 0:
cell_to_join_with = None
for row_num in range(min(cell['row_nums'])-1, -1, -1):
if row_num in first_column_cells_with_content_by_row:
cell_to_join_with = first_column_cells_with_content_by_row[row_num]
break
if not cell_to_join_with is None:
# Cells must have same header status and same column numbers to be joined
if not (set(cell_to_join_with['column_nums']) == set(cell['column_nums'])
and cell_to_join_with['is_column_header'] == cell['is_column_header']):
continue
cell_to_join_with['row_nums'] = list(set(cell_to_join_with['row_nums'] + cell['row_nums']))
try:
cell_to_join_with['pdf_bbox'] = list(
Rect(cell_to_join_with['pdf_bbox']).include_rect(cell['pdf_bbox']))
except:
pass
cells_to_delete.append(cell)
for cell in cells_to_delete:
table_dict['cells'].remove(cell)
def aggregate_cell_bboxes(page, table_dict, cell_bboxes, rotated=False):
table_bbox = None
row_bboxes = {}
col_bboxes = {}
expanded_cell_bboxes = {}
cells = table_dict['cells']
for cell_num, cell in enumerate(cells):
try:
cell_bbox = cell_bboxes[cell_num]
except:
continue
if not cell_bbox:
continue
if not table_bbox:
table_bbox = [entry for entry in cell_bbox]
else:
table_bbox = [min(table_bbox[0], cell_bbox[0]),
min(table_bbox[1], cell_bbox[1]),
max(table_bbox[2], cell_bbox[2]),
max(table_bbox[3], cell_bbox[3])]
if table_bbox:
if is_portrait(page, table_bbox):
table_dict['pdf_is_rotated'] = 0
else:
table_dict['pdf_is_rotated'] = 1
rotated = bool(table_dict['pdf_is_rotated'])
for cell_num, cell in enumerate(cells):
max_row = max(cell['row_nums'])
min_row = min(cell['row_nums'])
max_col = max(cell['column_nums'])
min_col = min(cell['column_nums'])
if not min_col in col_bboxes:
col_bboxes[min_col] = [None, None, None, None]
if not min_row in row_bboxes:
row_bboxes[min_row] = [None, None, None, None]
if not max_col in col_bboxes:
col_bboxes[max_col] = [None, None, None, None]
if not max_row in row_bboxes:
row_bboxes[max_row] = [None, None, None, None]
try:
cell_bbox = cell_bboxes[cell_num]
except:
continue
cell_bbox = cell_bboxes[cell_num]
if not cell_bbox:
continue
if not rotated:
if col_bboxes[min_col][0]:
col_bboxes[min_col][0] = min(col_bboxes[min_col][0], cell_bbox[0])
else:
col_bboxes[min_col][0] = cell_bbox[0]
if row_bboxes[min_row][1]:
row_bboxes[min_row][1] = min(row_bboxes[min_row][1], cell_bbox[1])
else:
row_bboxes[min_row][1] = cell_bbox[1]
if col_bboxes[max_col][2]:
col_bboxes[max_col][2] = max(col_bboxes[max_col][2], cell_bbox[2])
else:
col_bboxes[max_col][2] = cell_bbox[2]
if row_bboxes[max_row][3]:
row_bboxes[max_row][3] = max(row_bboxes[max_row][3], cell_bbox[3])
else:
row_bboxes[max_row][3] = cell_bbox[3]
else:
if col_bboxes[min_col][1]:
col_bboxes[min_col][1] = min(col_bboxes[min_col][1], cell_bbox[1])
else:
col_bboxes[min_col][1] = cell_bbox[1]
if row_bboxes[min_row][0]:
row_bboxes[min_row][0] = min(row_bboxes[min_row][0], cell_bbox[0])
else:
row_bboxes[min_row][0] = cell_bbox[0]
if col_bboxes[max_col][3]:
col_bboxes[max_col][3] = max(col_bboxes[max_col][3], cell_bbox[3])
else:
col_bboxes[max_col][3] = cell_bbox[3]
if row_bboxes[max_row][2]:
row_bboxes[max_row][2] = max(row_bboxes[max_row][2], cell_bbox[2])
else:
row_bboxes[max_row][2] = cell_bbox[2]
if not rotated:
for row_num in row_bboxes:
row_bboxes[row_num][0] = table_bbox[0]
row_bboxes[row_num][2] = table_bbox[2]
for col_num in col_bboxes:
col_bboxes[col_num][1] = table_bbox[1]
col_bboxes[col_num][3] = table_bbox[3]
else:
for row_num in row_bboxes:
row_bboxes[row_num][1] = table_bbox[1]
row_bboxes[row_num][3] = table_bbox[3]
for col_num in col_bboxes:
col_bboxes[col_num][0] = table_bbox[0]
col_bboxes[col_num][2] = table_bbox[2]
for cell_num, cell in enumerate(cells):
max_row = max(cell['row_nums'])
min_row = min(cell['row_nums'])
max_col = max(cell['column_nums'])
min_col = min(cell['column_nums'])
if not rotated:
expanded_cell_bbox = [col_bboxes[min_col][0],
row_bboxes[min_row][1],
col_bboxes[max_col][2],
row_bboxes[max_row][3]]
else:
expanded_cell_bbox = [row_bboxes[min_row][0],
col_bboxes[min_col][1],
row_bboxes[max_row][2],
col_bboxes[max_col][3]]
expanded_cell_bboxes[cell_num] = expanded_cell_bbox
return table_bbox, col_bboxes, row_bboxes, expanded_cell_bboxes
def table_text_edit_distance(cells):
L = 0
D = 0
for cell in cells:
xml_text = ''.join(cell['xml_text_content'].split())
pdf_text = ''.join(cell['pdf_text_content'].split())
L += len(xml_text) + len(pdf_text)
D += 2 * editdistance.eval(xml_text, pdf_text)
try:
D = D / L
except:
D = 1
return D, L
def is_good_bbox(bbox, page_bbox):
if (not bbox[0] is None and not bbox[1] is None and not bbox[2] is None and not bbox[3] is None
and bbox[0] >= 0 and bbox[1] >= 0 and bbox[2] <= page_bbox[2] and bbox[3] <= page_bbox[3]
and bbox[0] < bbox[2]-1 and bbox[1] < bbox[3]-1):
return True
return False
def iob(bbox1, bbox2):
"""
Compute the intersection area over box area, for bbox1.
"""
intersection = Rect(bbox1).intersect(bbox2)
return intersection.get_area() / Rect(bbox1).get_area()
def create_document_page_image(doc, page_num, output_image_max_dim=1000):
page = doc[page_num]
page_width = page.rect[2]
page_height = page.rect[3]
if page_height > page_width:
zoom = output_image_max_dim / page_height
output_image_height = output_image_max_dim
output_image_width = int(round(output_image_max_dim * page_width / page_height))
else:
zoom = output_image_max_dim / page_width
output_image_width = output_image_max_dim
output_image_height = int(round(output_image_max_dim * page_height / page_width))
mat = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix = mat, alpha = False)
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
return img
def create_pascal_voc_page_element(image_filename, output_image_width, output_image_height, database):
# Create XML of tables on PDF page in PASCAL VOC format
annotation = ET.Element("annotation")
folder = ET.SubElement(annotation, "folder").text = ""
filename = ET.SubElement(annotation, "filename").text = image_filename
path = ET.SubElement(annotation, "path").text = image_filename
source = ET.SubElement(annotation, "source")
database = ET.SubElement(source, "database").text = database
size = ET.SubElement(annotation, "size")
width = ET.SubElement(size, "width").text = str(output_image_width)
height = ET.SubElement(size, "height").text = str(output_image_height)
depth = ET.SubElement(size, "depth").text = "3"
segmented = ET.SubElement(annotation, "segmented").text = "0"
return annotation
def create_pascal_voc_object_element(class_name, bbox, page_bbox, output_image_max_dim=1000):
bbox_area = fitz.Rect(bbox).get_area()
if bbox_area == 0:
raise Exception
intersect_area = fitz.Rect(page_bbox).intersect(fitz.Rect(bbox)).get_area()
if abs(intersect_area - bbox_area) > 0.1:
print(bbox)
print(bbox_area)
print(page_bbox)
print(intersect_area)
raise Exception
object_ = ET.Element("object")
name = ET.SubElement(object_, "name").text = class_name
pose = ET.SubElement(object_, "pose").text = "Frontal"
truncated = ET.SubElement(object_, "truncated").text = "0"
difficult = ET.SubElement(object_, "difficult").text = "0"
occluded = ET.SubElement(object_, "occluded").text = "0"
bndbox = ET.SubElement(object_, "bndbox")
page_width = page_bbox[2] - page_bbox[0]
page_height = page_bbox[3] - page_bbox[1]
if page_width > page_height:
output_image_width = output_image_max_dim
output_image_height = int(output_image_max_dim * page_height / page_width)
else:
output_image_height = output_image_max_dim
output_image_width = int(output_image_max_dim * page_width / page_height)
xmin = (bbox[0] - page_bbox[0]) * output_image_width / page_width
ymin = (bbox[1] - page_bbox[1]) * output_image_height / page_height
xmax = (bbox[2] - page_bbox[0]) * output_image_width / page_width
ymax = (bbox[3] - page_bbox[1]) * output_image_height / page_height
ET.SubElement(bndbox, "xmin").text = "{0:.4f}".format(xmin)
ET.SubElement(bndbox, "ymin").text = "{0:.4f}".format(ymin)
ET.SubElement(bndbox, "xmax").text = "{0:.4f}".format(xmax)
ET.SubElement(bndbox, "ymax").text = "{0:.4f}".format(ymax)
return object_
def create_pascal_voc_object_element_direct(class_name, bbox):
object_ = ET.Element("object")
name = ET.SubElement(object_, "name").text = class_name
pose = ET.SubElement(object_, "pose").text = "Frontal"
truncated = ET.SubElement(object_, "truncated").text = "0"
difficult = ET.SubElement(object_, "difficult").text = "0"
occluded = ET.SubElement(object_, "occluded").text = "0"
bndbox = ET.SubElement(object_, "bndbox")
ET.SubElement(bndbox, "xmin").text = "{0:.4f}".format(bbox[0])
ET.SubElement(bndbox, "ymin").text = "{0:.4f}".format(bbox[1])
ET.SubElement(bndbox, "xmax").text = "{0:.4f}".format(bbox[2])
ET.SubElement(bndbox, "ymax").text = "{0:.4f}".format(bbox[3])
return object_
def save_xml_pascal_voc(page_annotation, filepath):
xmlstr = minidom.parseString(ET.tostring(page_annotation)).toprettyxml(indent=" ")
with open(filepath, "w") as f:
f.write(xmlstr)
def bbox_pdf_to_image(bbox, page_bbox, output_image_max_dim=1000):
page_width = page_bbox[2] - page_bbox[0]
page_height = page_bbox[3] - page_bbox[1]
if page_width > page_height:
output_image_width = output_image_max_dim
output_image_height = int(output_image_max_dim * page_height / page_width)
else:
output_image_height = output_image_max_dim
output_image_width = int(output_image_max_dim * page_width / page_height)
xmin = (bbox[0] - page_bbox[0]) * output_image_width / page_width
ymin = (bbox[1] - page_bbox[1]) * output_image_height / page_height
xmax = (bbox[2] - page_bbox[0]) * output_image_width / page_width
ymax = (bbox[3] - page_bbox[1]) * output_image_height / page_height
return [xmin, ymin, xmax, ymax]
def save_json(page_annotation_json, filepath):
with open(filepath, 'w') as outfile:
json.dump(page_annotation_json, outfile, indent=4)
def get_tokens_in_table_img(page_words, table_img_bbox):
tokens = []
for word_num, word in enumerate(page_words):
word['flags'] = 0
word['span_num'] = word_num
word['line_num'] = 0
word['block_num'] = 0
tokens.append(word)
tokens_in_table = [token for token in tokens if iob(token['bbox'], table_img_bbox) >= 0.5]
return tokens_in_table
def temp():
count = 0
good_count = 0
annotation_files_by_pmc_id = [] # fix this
total = len(annotation_files_by_pmc_id)
for idx in range(0, total):
pmc_id = pmc_ids[idx]
annotation_file = annotation_files_by_pmc_id[pmc_id]
count += 1
if count < restart_point:
continue
annotation_filepath = os.path.join(annotations_directory, annotation_file)
# Read table annotations, if they exist
# Open table file
with open(annotation_filepath, 'r', encoding='utf-8') as infile:
table_dicts = json.load(infile)
# Each table has associated bounding boxes
for table_num, table_entry in enumerate(table_dicts):
try:
if not 'pdf' in table_entry:
continue
split = table_entry['split']
rotated = table_entry['pdf']['rotated']
page_num = table_entry['pdf']['page_num']
# Create detection PASCAL VOC XML file and page image
page_bbox = table_entry['pdf']['page']['bbox']
# Get page image
table_image_filename = pmc_id + "_table_" + str(table_num) + ".jpg"
table_image_filepath = os.path.join(structure_image_directory, table_image_filename)
if os.path.exists(table_image_filepath):
img = Image.open(table_image_filepath)
else:
print(table_image_filepath)
xml_filename = pmc_id + "_table_" + str(table_num) + ".xml"
xml_filepath = os.path.join(structure_pascal_voc_directory, split, xml_filename)
if not os.path.exists(xml_filepath):
print(xml_filepath)
page_words_filepath = os.path.join(page_words_data_directory, pmc_id + "_" + str(page_num) + ".json")
with open(page_words_filepath, 'r') as f:
page_words = json.load(f)
if 'words' in page_words:
page_words = page_words['words']
# Crop
table_bbox = table_entry['pdf_bbox']
crop_bbox = [table_bbox[0]-padding,
table_bbox[1]-padding,
table_bbox[2]+padding,
table_bbox[3]+padding]
zoom = 1000 / max(page_bbox)
tokens_in_table_img = get_tokens_in_table_img(page_words, crop_bbox)
#print(tokens_in_table_img)
for token in tokens_in_table_img:
bbox = token['bbox']
bbox[0] = bbox[0] * zoom
bbox[1] = bbox[1] * zoom
bbox[2] = bbox[2] * zoom
bbox[3] = bbox[3] * zoom
token['bbox'] = bbox
# Convert to image coordinates
crop_bbox = [int(round(zoom*elem)) for elem in crop_bbox]
# Keep within image
crop_bbox = [max(0, crop_bbox[0]),
max(0, crop_bbox[1]),
min(img.size[0], crop_bbox[2]),
min(img.size[1], crop_bbox[3])]
for token in tokens_in_table_img:
bbox = token['bbox']
bbox[0] = (bbox[0] - crop_bbox[0] - 1)
bbox[1] = (bbox[1] - crop_bbox[1] - 1)
bbox[2] = (bbox[2] - crop_bbox[0] - 1)
bbox[3] = (bbox[3] - crop_bbox[1] - 1)
token['bbox'] = bbox
#img = img.crop(crop_bbox)
# If rotated, rotate:
if rotated:
for entry in tokens_in_table_img:
bbox = entry['bbox']
bbox = [img.size[0]-bbox[3]-2,bbox[0],img.size[0]-bbox[1]-2,bbox[2]]
entry['bbox'] = bbox
table_words_filename = pmc_id + "_table_" + str(table_num) + "_words.json"
table_words_filepath = os.path.join(table_words_data_directory, table_words_filename)
#print(table_words_filepath)
with open(table_words_filepath, 'w', encoding='utf8') as f:
json.dump(tokens_in_table_img, f)
except KeyboardInterrupt:
break
except FileNotFoundError:
print("error")
print(traceback.format_exc())
pass
except Exception as err:
print("error")
print(traceback.format_exc())
print("idx: {}".format(idx))
print("{}/{}".format(idx, total), end="\r")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir',
help="Root directory for source data to process")
parser.add_argument('--output_dir',
help="Root directory for output data")
parser.add_argument('--verbose', action='store_true')
parser.add_argument('--timeout_seconds', type=int, default=90)
parser.add_argument('--det_db_name', default='My-PubTables-Detection')
parser.add_argument('--str_db_name', default='My-PubTables-Structure')
parser.add_argument('--train_padding', type=int, default=30,
help="The amount of padding to add around a table in the training set when cropping.")
parser.add_argument('--test_padding', type=int, default=5,
help="The amount of padding to add around a table in the val and test sets when cropping.")
return parser.parse_args()
def main():
args = get_args()
source_directory = args.data_dir
timeout_seconds = args.timeout_seconds
detection_db_name = args.det_db_name
structure_db_name = args.str_db_name
VERBOSE = args.verbose
# TODO: Incorporate a train/test/val split and change padding for test/val sets
padding = args.train_padding
output_directory = args.output_dir # root location where to save data
det_xml_dir = os.path.join(output_directory, detection_db_name, "unsplit_xml")
det_img_dir = os.path.join(output_directory, detection_db_name, "images")
det_words_dir = os.path.join(output_directory, detection_db_name, "words")
str_xml_dir = os.path.join(output_directory, structure_db_name, "unsplit_xml")
str_img_dir = os.path.join(output_directory, structure_db_name, "images")
str_words_dir = os.path.join(output_directory, structure_db_name, "words")
pdf_annot_dir = os.path.join(output_directory, "My-PubTables-PDF-Annotations")
dirs = [det_xml_dir, det_img_dir, det_words_dir,
str_xml_dir, str_img_dir, str_words_dir, pdf_annot_dir]
for di in dirs:
if not os.path.exists(di):
os.makedirs(di)
'''
Get a list of all PDF-XML document pairs
'''
xml_files_by_pmc_id = {}
pdf_files_by_pmc_id = {}
pdf_list_filepath = os.path.join(source_directory, "pdf_filelist.txt")
if os.path.exists(pdf_list_filepath):
with open(pdf_list_filepath) as f:
for elem in f.readlines():
elem = elem.strip()
elem_xml = elem.replace(".pdf", ".nxml")
pmc_id = elem.split("/")[0]
xml_files_by_pmc_id[pmc_id] = elem_xml
pdf_files_by_pmc_id[pmc_id] = elem
else:
dirs = os.listdir(source_directory)
print(dirs)
for d in dirs:
if d.startswith("PMC"):
dir_path = os.path.join(source_directory, d)
if not os.path.isdir(dir_path):
continue
dir_files = os.listdir(dir_path)
for fi in dir_files:
if fi.endswith(".pdf"):
if fi.replace(".pdf", ".nxml") in dir_files:
pdf_file = os.path.join(d, fi)
pdf_files_by_pmc_id[d] = pdf_file
xml_files_by_pmc_id[d] = pdf_file.replace(".pdf", ".nxml")
pdf_files = list(pdf_files_by_pmc_id.values())
num_files = len(pdf_files)
print(num_files)
output_image_max_dim = 1000
start_point = 0
end_point = 10 #start_point + 2
# Progress tracking
skipped_files = 0
parsed_instances = 0
annotated_tables = 0
exception_count = 0
timeout_count = 0
table_encounters = 0
low_quality_tables = 0
tables_for_detection = 0
table_image_count = 0
'''
Process each PDF-XML file pair to annotate the tables in the PDF.
'''
print("Num files total: {}".format(num_files))
print("Annotating files {}-{}".format(start_point, end_point-1))
for idx, pdf_file in enumerate(pdf_files):
if idx < start_point:
continue
if idx >= end_point:
break
pmc_id = pdf_file.split("/")[0]
split = "train" # fix this: split_by_pmc_id[pmc_id]
save_filepath = os.path.join(pdf_annot_dir, pmc_id + "_tables.json")
print(pdf_file)
pdf_path = os.path.join(source_directory, pdf_file)
xml_path = pdf_path.replace(".pdf", ".nxml")
print("PROGRESS: {}/{} ({}/{}). {} files skipped. Table instances: {} parsed, {} fully annotated. ".format(
idx-start_point+1, end_point-start_point, idx, num_files, skipped_files, parsed_instances,
annotated_tables), flush=True)
try:
if VERBOSE: print("Reading XML...", end='')
xml_string = read_xml(xml_path)
#print(xml_string)
table_dicts = extract_table_xmls_from_document(xml_string)
num_tables_parsed = len(table_dicts)
parsed_instances += num_tables_parsed
if VERBOSE: print(" {} tables found.".format(num_tables_parsed))
except Exception as e:
print(e)
print("Error during XML reading/parsing.")
skipped_files += 1
continue
if num_tables_parsed == 0:
continue
try:
print("Reading PDF")
doc = read_pdf(pdf_path)
except:
print("Error during PDF reading.")
skipped_files += 1
continue
annotated_table_dicts = []
for table_idx, table_dict in enumerate(table_dicts):
table_dict['xml_table_index'] = table_idx
table_encounters += 1
try:
#-------------------#
# PARSING
#-------------------#
if VERBOSE: print("Parsing table XML...")
start_index = table_dict['xml_table_wrap_start_character_index']
end_index = table_dict['xml_table_wrap_end_character_index']
table_xml = xml_string[start_index:end_index]
#print(table_xml)
table_dict = parse_xml_table(xml_string, table_dict)
#print(table_dict)
if table_dict:
if len(table_dict['cells']) == 0:
print("Table has no annotated cells; could be a graphic")
continue
clean_xml_annotation(table_dict)
#-------------------#
# ALIGNMENT
#-------------------#
if VERBOSE: print("Locating table page...")
with timeout(seconds=timeout_seconds):
table_page_num, scores = get_table_page(doc, table_dict)
table_dict['pdf_page_index'] = table_page_num
print(table_page_num)
page = doc[table_page_num]
page_words = get_page_words(page)
table_dict['pdf_full_page_bbox'] = list(page.rect)
if VERBOSE: print("Locating table bounding box...")
with timeout(seconds=timeout_seconds):
cell_bboxes, word_bboxes = locate_table(page, table_dict)
if not cell_bboxes:
print("No cell bboxes")
continue
#-------------------#
# COMPLETION
#-------------------#
table_bbox, col_bboxes, row_bboxes, expanded_cell_bboxes = aggregate_cell_bboxes(page, table_dict,
cell_bboxes)
if VERBOSE:
print("Table frame bbox: {}".format(table_bbox))
table_dict['pdf_table_bbox'] = table_bbox
caption_pieces = []
try:
label = table_dict['xml_caption_label_text']
if len(label) > 0:
caption_pieces.append(label)
except:
print(traceback.format_exc())
try:
text = table_dict['xml_caption_text']
if len(text) > 0:
caption_pieces.append(text)
except:
print(traceback.format_exc())
caption = " ".join(caption_pieces)
caption_bbox = []
table_dict['pdf_caption_page_num'] = None
table_dict['pdf_caption_bbox'] = []
table_dict['pdf_caption_word_bboxes'] = []
if len(caption) > 9:
if VERBOSE: print("Locating caption bounding box...")
with timeout(seconds=60):
caption_bbox, caption_word_bboxes = locate_caption(page, caption)
if len(caption_bbox) == 4:
table_dict['pdf_caption_page_num'] = table_page_num
table_dict['pdf_caption_bbox'] = caption_bbox
table_dict['pdf_caption_word_bboxes'] = caption_word_bboxes
if VERBOSE: print("Caption bbox: {}".format(caption_bbox))
footer_bbox = []
footer = table_dict['xml_table_footer_text']
table_dict['pdf_table_footer_page_num'] = None
table_dict['pdf_table_footer_bbox'] = []
table_dict['pdf_table_footer_word_bboxes'] = []
if len(footer) > 9:
if VERBOSE: print("Locating footer bounding box...")
with timeout(seconds=60):
footer_bbox, footer_word_bboxes = locate_caption(page, footer)
if len(footer_bbox) == 4:
table_dict['pdf_table_footer_page_num'] = table_page_num
table_dict['pdf_table_footer_bbox'] = footer_bbox
table_dict['pdf_table_footer_word_bboxes'] = footer_word_bboxes
if VERBOSE: print("Footer bbox: {}".format(footer_bbox))
header_rows = set()
for cell in table_dict['cells']:
if cell['is_column_header']:
header_rows = header_rows.union(set(cell['row_nums']))
table_wrap_bbox = Rect(table_bbox)
if len(caption_bbox) == 4:
table_wrap_bbox.include_rect(caption_bbox)
if len(footer_bbox) == 4:
table_wrap_bbox.include_rect(footer_bbox)
table_dict['pdf_table_wrap_bbox'] = list(table_wrap_bbox)
table_dict['rows'] = [{} for row_num in row_bboxes]
for row_num in row_bboxes:
table_dict['rows'][row_num]['pdf_row_bbox'] = row_bboxes[row_num]
table_dict['rows'][row_num]['is_column_header'] = row_num in header_rows
table_dict['columns'] = [{} for col_num in col_bboxes]
for column_num in col_bboxes:
table_dict['columns'][column_num]['pdf_column_bbox'] = col_bboxes[column_num]
for cell_num, cell in enumerate(table_dict['cells']):
cell['pdf_bbox'] = expanded_cell_bboxes[cell_num]
cell['pdf_text_tight_bbox'] = cell_bboxes[cell_num]
if not cell_bboxes[cell_num] is None:
pdf_text_content, _ = extract_text_inside_bbox(page_words, cell_bboxes[cell_num])
else:
pdf_text_content = ""
cell['pdf_text_content'] = pdf_text_content
table_dict['pdf_word_bboxes'] = word_bboxes
#-------------------#
# CANONICALIZATION
#-------------------#
try:
fix_caption_and_footer(doc, table_dict)
if VERBOSE:
print("Adjusted caption bbox: {}".format(table_dict['pdf_caption_bbox']))
print("Adjusted footer bbox: {}".format(table_dict['pdf_table_footer_bbox']))
except:
print(traceback.format_exc())
try:
standardize_and_fix_xml_annotation(table_dict)
except:
print(traceback.format_exc())
#-------------------#
# QUALITY CONTROL
#-------------------#
D, _ = table_text_edit_distance(table_dict['cells'])
if VERBOSE:
print("Table text content annotation disagreement score: {}".format(D))
if D > 0.05:
low_quality_tables += 1
print(">>>> LOW QUALITY TABLE ANNOTATION <<<<")
continue
#-------------------#
# CLEANUP
#-------------------#
if 'pdf_word_bboxes' in table_dict:
del table_dict['pdf_word_bboxes']
if 'pdf_caption_word_bboxes' in table_dict:
del table_dict['pdf_caption_word_bboxes']
if 'pdf_table_footer_word_bboxes' in table_dict:
del table_dict['pdf_table_footer_word_bboxes']
#-------------------#
# SAVE
#-------------------#
table_dict['pmc_id'] = pmc_id
table_dict['pdf_file_name'] = pdf_file.split("/")[-1]
table_dict['xml_file_name'] = table_dict['pdf_file_name'].replace(".pdf", ".nxml")
table_dict['split'] = split
table_dict['structure_id'] = pmc_id + "_table_" + str(table_idx)
annotated_tables += 1
annotated_table_dicts.append(table_dict)
except KeyboardInterrupt:
break
except TimeoutError:
table_dict['timeout'] = True
print("#### TIMEOUT ####")
annotated_table_dicts.append(table_dict)
timeout_count += 1
except:
print("**** EXCEPTION ****")
print(traceback.format_exc())
exception_count += 1
# While this is pretty strict and will exclude some tables for detection that could be included,
# it's the only way to ensure that tables included for detection are correct using an automated method.
# If every table in the XML passes the checks, then we know that no page image will have a missing or
# incomplete table annotation.
if len(annotated_table_dicts) == len(table_dicts):
exclude_for_detection = False
tables_for_detection += len(table_dicts)
else:
exclude_for_detection = True
if VERBOSE:
print("Not all tables fully annotated and passed quality control. Exclude these for detection.")
for table_dict in annotated_table_dicts:
table_dict['exclude_for_detection'] = exclude_for_detection
#-----------------------------------#
# TABLE DETECTION IMAGE DATA
#-----------------------------------#
if not exclude_for_detection:
detection_boxes_by_page = defaultdict(list)
# Each table has associated bounding boxes
for table_dict in annotated_table_dicts:
if 'timeout' in table_dict and table_dict['timeout']:
continue
try:
table_boxes = []
rotated = table_dict['pdf_is_rotated']
page_num = table_dict['pdf_page_index']
# Create detection data
if rotated:
class_label = 'table rotated'
else:
class_label = 'table'
dict_entry = {'class_label': class_label, 'bbox': table_dict['pdf_table_bbox']}
detection_boxes_by_page[page_num].append(dict_entry)
except Exception as err:
print(traceback.format_exc())
# Create detection PASCAL VOC XML file and page image
for page_num, boxes in detection_boxes_by_page.items():
try:
page_bbox = list(doc[page_num].rect)
if not all([is_good_bbox(entry['bbox'], page_bbox) for entry in boxes]):
raise Exception("At least one bounding box has non-positive area or is outside of image")
# Create page image
image_filename = pmc_id + "_" + str(page_num) + ".jpg"
image_filepath = os.path.join(det_img_dir, image_filename)
img = create_document_page_image(doc, page_num, output_image_max_dim=output_image_max_dim)
img.save(image_filepath)
# Initialize PASCAL VOC XML
page_annotation = create_pascal_voc_page_element(image_filename, img.width, img.height,
database=detection_db_name)
for entry in boxes:
# Add to PASCAl VOC
element = create_pascal_voc_object_element(entry['class_label'],
entry['bbox'], page_bbox,
output_image_max_dim=output_image_max_dim)
page_annotation.append(element)
xml_filename = pmc_id + "_" + str(page_num) + ".xml"
xml_filepath = os.path.join(det_xml_dir, xml_filename)
save_xml_pascal_voc(page_annotation, xml_filepath)
page_words_filename = xml_filename.replace(".xml", "_words.json")
page_words_filepath = os.path.join(det_words_dir, page_words_filename)
page = doc[page_num]
page_words = get_page_words(page)
zoom = 1000 / max(page.rect)
for word in page_words:
word['bbox'] = [zoom*elem for elem in word['bbox']]
with open(page_words_filepath, 'w') as f:
json.dump(page_words, f)
except Exception as err:
print(traceback.format_exc())
# Save results for this document
if VERBOSE: print(save_filepath)
save_full_tables_annotation(annotated_table_dicts, save_filepath)
if VERBOSE: print("DETECTION SAMPLE SAVED!")
#-----------------------------------#
# TABLE STRUCTURE IMAGE DATA
#-----------------------------------#
for table_num, table_entry in enumerate(annotated_table_dicts):
if 'timeout' in table_entry and table_entry['timeout']:
continue
try:
table_boxes = []
# Check if table has at least two columns
num_columns = table_entry['num_columns']
if num_columns < 2:
continue
if not 'columns' in table_entry:
continue
# Check if table has at least one row
num_rows = table_entry['num_rows']
if num_rows < 1:
continue
if not 'rows' in table_entry:
continue
rotated = table_entry['pdf_is_rotated']
page_num = table_entry['pdf_page_index']
# Create structure recognition data
dict_entry = {'class_label': 'table', 'bbox': table_entry['pdf_table_bbox']}
table_boxes.append(dict_entry)
# Dilation
if rotated:
row1_idx = 2
row2_idx = 0
col1_idx = 1
col2_idx = 3
else:
row1_idx = 3
row2_idx = 1
col1_idx = 2
col2_idx = 0
rows = table_entry['rows']
rows = sorted(rows, key=lambda k: k['pdf_row_bbox'][row1_idx])
if len(rows) > 1:
for row1, row2 in zip(rows[:-1], rows[1:]):
mid_point = (row1['pdf_row_bbox'][row1_idx] + row2['pdf_row_bbox'][row2_idx]) / 2
row1['pdf_row_bbox'][row1_idx] = mid_point
row2['pdf_row_bbox'][row2_idx] = mid_point
columns = table_entry['columns']
if rotated:
columns = sorted(columns, key=lambda k: -k['pdf_column_bbox'][col1_idx])
else:
columns = sorted(columns, key=lambda k: k['pdf_column_bbox'][col1_idx])
if len(columns) > 1:
for col1, col2 in zip(columns[:-1], columns[1:]):
mid_point = (col1['pdf_column_bbox'][col1_idx] + col2['pdf_column_bbox'][col2_idx]) / 2
col1['pdf_column_bbox'][col1_idx] = mid_point
col2['pdf_column_bbox'][col2_idx] = mid_point
for cell in table_entry['cells']:
column_nums = cell['column_nums']
row_nums = cell['row_nums']
column_rect = Rect()
row_rect = Rect()
for column_num in column_nums:
column_rect.include_rect(columns[column_num]['pdf_column_bbox'])
for row_num in row_nums:
row_rect.include_rect(rows[row_num]['pdf_row_bbox'])
cell_rect = column_rect.intersect(row_rect)
cell['pdf_bbox'] = list(cell_rect)
header_rect = Rect()
for cell in table_entry['cells']:
cell_bbox = cell['pdf_bbox']
blank = len(cell['xml_text_content'].strip()) == 0
supercell = len(cell['row_nums']) > 1 or len(cell['column_nums']) > 1
header = cell['is_column_header']
if not header and len(cell['column_nums']) == num_columns:
dict_entry = {'class_label': 'table projected row header', 'bbox': cell['pdf_bbox']}
table_boxes.append(dict_entry)
elif supercell and not blank:
dict_entry = {'class_label': 'table spanning cell', 'bbox': cell['pdf_bbox']}
table_boxes.append(dict_entry)
if header:
header_rect.include_rect(cell_bbox)
if header_rect.get_area() > 0:
dict_entry = {'class_label': 'table column header', 'bbox': list(header_rect)}
table_boxes.append(dict_entry)
for row in table_entry['rows']:
row_bbox = row['pdf_row_bbox']
dict_entry = {'class_label': 'table row', 'bbox': row_bbox}
table_boxes.append(dict_entry)
# table_entry['columns']
for column in table_entry['columns']:
dict_entry = {'class_label': 'table column', 'bbox': column['pdf_column_bbox']}
table_boxes.append(dict_entry)
# Create detection PASCAL VOC XML file and page image
page_bbox = table_entry['pdf_full_page_bbox']
# Get page image
page_image_filename = pmc_id + "_" + str(page_num) + ".jpg"
page_image_filepath = os.path.join(det_img_dir, page_image_filename)
if os.path.exists(page_image_filepath):
img = Image.open(page_image_filepath)
else:
#print("Creating image")
img = create_document_page_image(doc, page_num, output_image_max_dim=1000)
# Crop
table_bbox = table_entry['pdf_table_bbox']
crop_bbox = [table_bbox[0]-padding,
table_bbox[1]-padding,
table_bbox[2]+padding,
table_bbox[3]+padding]
zoom = 1000 / max(page_bbox)
# Convert to image coordinates
crop_bbox = [int(round(zoom*elem)) for elem in crop_bbox]
# Keep within image
crop_bbox = [max(0, crop_bbox[0]),
max(0, crop_bbox[1]),
min(img.size[0], crop_bbox[2]),
min(img.size[1], crop_bbox[3])]
img = img.crop(crop_bbox)
for entry in table_boxes:
bbox = entry['bbox']
bbox = [zoom*elem for elem in bbox]
bbox = [bbox[0]-crop_bbox[0]-1,
bbox[1]-crop_bbox[1]-1,
bbox[2]-crop_bbox[0]-1,
bbox[3]-crop_bbox[1]-1]
entry['bbox'] = bbox
# If rotated, rotate:
if rotated:
img = img.rotate(270, expand=True)
for entry in table_boxes:
bbox = entry['bbox']
bbox = [img.size[0]-bbox[3]-1,bbox[0],img.size[0]-bbox[1]-1,bbox[2]]
entry['bbox'] = bbox
# Initialize PASCAL VOC XML
table_image_filename = pmc_id + "_table_" + str(table_num) + ".jpg"
table_image_filepath = os.path.join(str_img_dir, table_image_filename)
table_annotation = create_pascal_voc_page_element(table_image_filename,
img.width, img.height,
database=structure_db_name)
for entry in table_boxes:
bbox = entry['bbox']
# Add to PASCAl VOC
element = create_pascal_voc_object_element_direct(entry['class_label'],
entry['bbox'])
table_annotation.append(element)
img.save(table_image_filepath)
xml_filename = pmc_id + "_table_" + str(table_num) + ".xml"
xml_filepath = os.path.join(str_xml_dir, xml_filename)
if VERBOSE: print(xml_filepath)
save_xml_pascal_voc(table_annotation, xml_filepath)
table_words_filename = xml_filename.replace(".xml", "_words.json")
table_words_filepath = os.path.join(str_words_dir, table_words_filename)
page_words = get_page_words(doc[page_num])
table_words = []
for word_num, word in enumerate(page_words):
token = {}
token['flags'] = 0
token['span_num'] = word_num
token['line_num'] = 0
token['block_num'] = 0
bbox = [round(zoom * v, 5) for v in word['bbox']]
if iob(bbox, crop_bbox) > 0.75:
bbox = [max(0, bbox[0]-crop_bbox[0]-1),
max(0, bbox[1]-crop_bbox[1]-1),
min(img.size[0], bbox[2]-crop_bbox[0]-1),
min(img.size[1], bbox[3]-crop_bbox[1]-1)]
if (bbox[0] < 0 or bbox[1] < 0 or bbox[2] > img.size[0] or bbox[3] > img.size[1]
or bbox[0] > bbox[2] or bbox[1] > bbox[3]):
bad_box = True
else:
token['bbox'] = bbox
token['text'] = word['text']
table_words.append(token)
with open(table_words_filepath, 'w') as f:
json.dump(table_words, f)
table_image_count += 1
if VERBOSE: print("STRUCTURE SAMPLE SAVED!")
except KeyboardInterrupt:
break
except Exception as err:
print("error")
print(traceback.format_exc())
print("idx: {}".format(idx))
print("Number of table encounters: {}".format(table_encounters))
print("Number of table annotations completed: {}".format(annotated_tables))
print("Number of tables eligible for detection: {}".format(tables_for_detection))
print("Number of low quality tables removed: {}".format(low_quality_tables))
print("Number of exceptions: {}".format(exception_count))
print("Numer of timeouts: {}".format(timeout_count))
print("Numer of cropped tables saved in PASCAL VOC format: {}".format(table_image_count))
if __name__ == "__main__":
main() |