File size: 68,412 Bytes
cf7fac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552de80
cf7fac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552de80
 
 
 
 
 
 
 
 
cf7fac2
 
 
 
 
 
 
552de80
cf7fac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552de80
cf7fac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552de80
 
 
cf7fac2
552de80
cf7fac2
 
552de80
cf7fac2
552de80
cf7fac2
 
 
552de80
 
 
 
cf7fac2
552de80
 
 
 
 
 
cf7fac2
 
 
 
552de80
cf7fac2
 
 
552de80
 
cf7fac2
 
 
 
552de80
cf7fac2
 
 
 
 
 
552de80
 
cf7fac2
 
 
 
 
 
 
552de80
 
 
 
 
 
 
 
cf7fac2
552de80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf7fac2
552de80
cf7fac2
552de80
cf7fac2
552de80
cf7fac2
552de80
cf7fac2
552de80
cf7fac2
552de80
cf7fac2
552de80
 
cf7fac2
552de80
 
cf7fac2
552de80
 
cf7fac2
552de80
 
 
 
 
cf7fac2
 
 
 
 
552de80
cf7fac2
 
552de80
cf7fac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552de80
 
cf7fac2
 
552de80
 
cf7fac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Minerva: AI Guardian for Scam Protection"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This notebook implements a multi-agent system for analyzing images (screenshots) to identify scam attempts, and provide personalized scam prevention. It uses [AutoGen](https://github.com/microsoft/autogen/) to orchestrate various specialized agents that work together.\n",
    "\n",
    "Benefits:\n",
    "- Automates the process of identifying suspicious scam patterns.\n",
    "- Prevents Financial Loss\n",
    "- Saves Time: Early scam detection reduces the number of claims filed by end-users."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Install Dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Note: you may need to restart the kernel to use updated packages.\n"
     ]
    }
   ],
   "source": [
    "%pip install -q autogen-agentchat==0.4.0.dev11 autogen-ext[openai]==0.4.0.dev11 pillow pytesseract pyyaml "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Model Initialization"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from dotenv import load_dotenv, find_dotenv\n",
    "from autogen_ext.models.openai import OpenAIChatCompletionClient\n",
    "\n",
    "load_dotenv(find_dotenv())\n",
    "\n",
    "model = OpenAIChatCompletionClient(\n",
    "    model=\"gpt-4o\",\n",
    "    api_key=os.getenv(\"OPENAI_API_KEY\")\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Tools Creation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "from autogen_core.tools import FunctionTool\n",
    "from tools import Tools\n",
    "\n",
    "tools = Tools()\n",
    "\n",
    "ocr_tool = FunctionTool(\n",
    "    tools.ocr, description=\"Extracts text from an image\"\n",
    ")\n",
    "\n",
    "url_checker_tool = FunctionTool(\n",
    "    tools.is_url_safe, description=\"Checks if a URL is safe\"\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Agents Creation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "import yaml\n",
    "\n",
    "with open('config/agents.yaml', 'r') as file:\n",
    "    config = yaml.safe_load(file)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "from autogen_agentchat.agents import AssistantAgent\n",
    "from autogen_agentchat.teams import RoundRobinGroupChat\n",
    "\n",
    "ocr_agent = AssistantAgent(\n",
    "    name=\"OCR_Specialist\",\n",
    "    description=\"Extracts text from an image\",\n",
    "    system_message=config['ocr_agent']['assignment'],\n",
    "    model_client=model,\n",
    "    #tools=[ocr_tool]\n",
    ")\n",
    "\n",
    "url_checker_agent = AssistantAgent(\n",
    "    name=\"URL_Checker\",\n",
    "    description=\"Checks if a URL is safe\",\n",
    "    system_message=config['url_checker_agent']['assignment'],\n",
    "    model_client=model,\n",
    "    tools=[url_checker_tool]\n",
    ")\n",
    "\n",
    "content_agent = AssistantAgent(\n",
    "    name=\"Content_Analyst\",\n",
    "    description=\"Analyzes the text for scam patterns\",\n",
    "    system_message=config['content_agent']['assignment'],\n",
    "    model_client=model,\n",
    "    #tools=[url_checker_tool]\n",
    ")\n",
    "\n",
    "decision_agent = AssistantAgent(\n",
    "    name=\"Decision_Maker\",\n",
    "    description=\"Synthesizes the analyses and make final determination\",\n",
    "    system_message=config['decision_agent']['assignment'],\n",
    "    model_client=model\n",
    ")\n",
    "\n",
    "summary_agent = AssistantAgent(\n",
    "    name=\"Summary_Agent\",\n",
    "    description=\"Generate a summary of the final determination\",\n",
    "    system_message=config['summary_agent']['assignment'],\n",
    "    model_client=model\n",
    ")\n",
    "\n",
    "language_translation_agent = AssistantAgent(\n",
    "    name=\"Language_Translation_Agent\",\n",
    "    description=\"Translate the summary to the user language, which is the language of the extracted text\",\n",
    "    system_message=config['language_translation_agent']['assignment'],\n",
    "    model_client=model\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Team Creation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "team = RoundRobinGroupChat([ocr_agent, url_checker_agent, content_agent, decision_agent, summary_agent, language_translation_agent], max_turns=6)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Running the Team"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<img src=\"\"/>"
      ],
      "text/plain": [
       "<autogen_core._image.Image at 0x797b7f6d3080>"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from autogen_agentchat.messages import MultiModalMessage\n",
    "from autogen_core import Image as AGImage\n",
    "from PIL import Image\n",
    "\n",
    "image_path = \"./samples/02.giftcard.message.scam.png\"\n",
    "# image_path = \"./samples/scam.spanish.png\"\n",
    "\n",
    "pil_image = Image.open(image_path)\n",
    "img = AGImage(pil_image)\n",
    "multi_modal_message = MultiModalMessage(content=[img], source=\"User\")\n",
    "img"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "#team.reset()\n",
    "stream = team.run_stream(task=multi_modal_message)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "---------- User ----------\n",
      "<image>\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "---------- OCR_Specialist ----------\n",
      "Congratulations! You've won a $1,000 Walmart gift card. Go to http://bit.ly/123456 tp claim now.\n",
      "[Prompt tokens: 330, Completion tokens: 26]\n",
      "---------- URL_Checker ----------\n",
      "[FunctionCall(id='call_fj1nCVYiksMkytwKw6jeThkj', arguments='{\"target_url\":\"http://bit.ly/123456\"}', name='is_url_safe')]\n",
      "[Prompt tokens: 384, Completion tokens: 22]\n",
      "---------- URL_Checker ----------\n",
      "[FunctionExecutionResult(content='(True, [])', call_id='call_fj1nCVYiksMkytwKw6jeThkj')]\n",
      "---------- URL_Checker ----------\n",
      "(True, [])\n",
      "---------- Content_Analyst ----------\n",
      "This message shows several signs of being a potential scam:\n",
      "\n",
      "1. **Unsolicited Message:** You received a notification out of the blue about winning a prize.\n",
      "\n",
      "2. **Shortened URL:** The use of a link shortener (bit.ly) could be hiding the actual destination, which is often used for malicious purposes.\n",
      "\n",
      "3. **Urgency:** The message prompts immediate action (\"claim now\"), pressuring you to visit the link without thinking.\n",
      "\n",
      "4. **Spelling Error:** There's a typo, \"tp\" instead of \"to,\" which is common in scam messages.\n",
      "\n",
      "5. **Large Prize Claim:** Offers of large sums or prizes often lure recipients into clicking or providing personal information.\n",
      "\n",
      "Always verify through official channels before acting on such messages. Do not click on the link or provide any personal information.\n",
      "[Prompt tokens: 391, Completion tokens: 163]\n",
      "---------- Decision_Maker ----------\n",
      "This message is likely a scam. Here’s why:\n",
      "\n",
      "1. **Unexpected Win:** Legitimate companies rarely give out significant prizes randomly.\n",
      "\n",
      "2. **Shortened Link:** The use of a URL shortener can conceal malicious sites.\n",
      "\n",
      "3. **Sense of Urgency:** It creates pressure to act quickly, a common tactic in scams.\n",
      "\n",
      "4. **Typo:** The presence of errors (\"tp\" instead of \"to\") is typical in fraudulent messages.\n",
      "\n",
      "5. **Generic Greeting:** Scams often use impersonal or generic messages.\n",
      "\n",
      "Always verify with the company directly if you receive such messages. Do not click the link or share personal information.\n",
      "[Prompt tokens: 521, Completion tokens: 129]\n",
      "---------- Summary_Agent ----------\n",
      "The text message is likely a scam. It claims you won a large prize unexpectedly, uses a shortened URL to conceal a potentially harmful site, and includes a typo (\"tp\" instead of \"to\"). These are common red flags. Additionally, it urges immediate action, a tactic often used by scammers. To stay safe, avoid clicking the link and don't share any personal information. Verify through official channels if you're unsure.\n",
      "[Prompt tokens: 695, Completion tokens: 83]\n",
      "---------- Language_Translation_Agent ----------\n",
      "The message claims you've won a $1,000 Walmart gift card, but it shows signs of being a scam. It uses a shortened URL, contains a typo, and urges quick action, which are common in fraudulent messages. Avoid clicking the link or sharing personal information. Always verify with the company directly if unsure.\n",
      "[Prompt tokens: 778, Completion tokens: 63]\n",
      "---------- Summary ----------\n",
      "Number of messages: 9\n",
      "Finish reason: Maximum number of turns 6 reached.\n",
      "Total prompt tokens: 3099\n",
      "Total completion tokens: 486\n",
      "Duration: 17.81 seconds\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "TaskResult(messages=[MultiModalMessage(source='User', models_usage=None, content=[<autogen_core._image.Image object at 0x797b7f6d3080>], type='MultiModalMessage'), TextMessage(source='OCR_Specialist', models_usage=RequestUsage(prompt_tokens=330, completion_tokens=26), content=\"Congratulations! You've won a $1,000 Walmart gift card. Go to http://bit.ly/123456 tp claim now.\", type='TextMessage'), ToolCallMessage(source='URL_Checker', models_usage=RequestUsage(prompt_tokens=384, completion_tokens=22), content=[FunctionCall(id='call_fj1nCVYiksMkytwKw6jeThkj', arguments='{\"target_url\":\"http://bit.ly/123456\"}', name='is_url_safe')], type='ToolCallMessage'), ToolCallResultMessage(source='URL_Checker', models_usage=None, content=[FunctionExecutionResult(content='(True, [])', call_id='call_fj1nCVYiksMkytwKw6jeThkj')], type='ToolCallResultMessage'), TextMessage(source='URL_Checker', models_usage=None, content='(True, [])', type='TextMessage'), TextMessage(source='Content_Analyst', models_usage=RequestUsage(prompt_tokens=391, completion_tokens=163), content='This message shows several signs of being a potential scam:\\n\\n1. **Unsolicited Message:** You received a notification out of the blue about winning a prize.\\n\\n2. **Shortened URL:** The use of a link shortener (bit.ly) could be hiding the actual destination, which is often used for malicious purposes.\\n\\n3. **Urgency:** The message prompts immediate action (\"claim now\"), pressuring you to visit the link without thinking.\\n\\n4. **Spelling Error:** There\\'s a typo, \"tp\" instead of \"to,\" which is common in scam messages.\\n\\n5. **Large Prize Claim:** Offers of large sums or prizes often lure recipients into clicking or providing personal information.\\n\\nAlways verify through official channels before acting on such messages. Do not click on the link or provide any personal information.', type='TextMessage'), TextMessage(source='Decision_Maker', models_usage=RequestUsage(prompt_tokens=521, completion_tokens=129), content='This message is likely a scam. Here’s why:\\n\\n1. **Unexpected Win:** Legitimate companies rarely give out significant prizes randomly.\\n\\n2. **Shortened Link:** The use of a URL shortener can conceal malicious sites.\\n\\n3. **Sense of Urgency:** It creates pressure to act quickly, a common tactic in scams.\\n\\n4. **Typo:** The presence of errors (\"tp\" instead of \"to\") is typical in fraudulent messages.\\n\\n5. **Generic Greeting:** Scams often use impersonal or generic messages.\\n\\nAlways verify with the company directly if you receive such messages. Do not click the link or share personal information.', type='TextMessage'), TextMessage(source='Summary_Agent', models_usage=RequestUsage(prompt_tokens=695, completion_tokens=83), content='The text message is likely a scam. It claims you won a large prize unexpectedly, uses a shortened URL to conceal a potentially harmful site, and includes a typo (\"tp\" instead of \"to\"). These are common red flags. Additionally, it urges immediate action, a tactic often used by scammers. To stay safe, avoid clicking the link and don\\'t share any personal information. Verify through official channels if you\\'re unsure.', type='TextMessage'), TextMessage(source='Language_Translation_Agent', models_usage=RequestUsage(prompt_tokens=778, completion_tokens=63), content=\"The message claims you've won a $1,000 Walmart gift card, but it shows signs of being a scam. It uses a shortened URL, contains a typo, and urges quick action, which are common in fraudulent messages. Avoid clicking the link or sharing personal information. Always verify with the company directly if unsure.\", type='TextMessage')], stop_reason='Maximum number of turns 6 reached.')"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from autogen_agentchat.ui import Console\n",
    "await Console(stream)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [],
   "source": [
    "from pprint import pprint\n",
    "\n",
    "streams = []\n",
    "async for s in stream:\n",
    "    streams.append(s)\n",
    "\n",
    "pprint(streams[-1].messages[-1].content)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}