File size: 1,227 Bytes
c8c4a86
 
 
 
 
 
ae59d89
dc87dbb
 
c8c4a86
 
 
 
34b6899
ae59d89
c8c4a86
3c355ba
 
c8c4a86
 
dc87dbb
ae59d89
c8c4a86
dc87dbb
ae59d89
c8c4a86
 
 
 
 
 
34b6899
 
c8c4a86
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import os
import gradio as gr
import torch
import numpy as np
from transformers import pipeline

name_list = ['microsoft/biogpt', 'google/flan-ul2']

examples = [['COVID-19 is'],['A 65-year-old female patient with a past medical history of']] 

print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")

pipe_biogpt = pipeline("text-generation", model="microsoft/biogpt", device="cuda:0", model_kwargs={"torch_dtype":torch.bfloat16})
pipe_flan_ul2 = pipeline("text-generation", model="google/flan-ul2", device="cuda:0", model_kwargs={"torch_dtype":torch.bfloat16})

title = "LLM vs LLM!"
description = "**Disclaimer:** this demo was made for research purposes only."

def inference(text):
  output_biogpt = pipe_biogpt(text, max_length=100)[0]["generated_text"]
  output_flan_ul2 = pipe_flan_ul2(text, max_length=100)[0]["generated_text"]
  return [
      output_biogpt, 
      output_flan_ul2
  ]

io = gr.Interface(
  inference,
  gr.Textbox(lines=3),
  outputs=[
    gr.Textbox(lines=3, label="microsoft/biogpt"),
    gr.Textbox(lines=3, label="google/flan-ul2"),
  ],
  title=title,
  description=description,
  examples=examples
)
io.launch()