File size: 12,812 Bytes
a23bdc6
 
 
6e35819
a23bdc6
 
6e35819
e519933
a23bdc6
6e35819
a23bdc6
 
 
 
 
83afd54
ea4284c
 
 
 
 
 
 
 
 
0a408c8
ea4284c
83afd54
 
 
a23bdc6
 
 
 
83afd54
a23bdc6
83afd54
ea4284c
 
 
 
 
a23bdc6
ea4284c
 
a23bdc6
0a408c8
 
a23bdc6
6e35819
ea4284c
 
 
 
 
 
 
 
3a7a44c
 
e519933
3a7a44c
 
 
 
 
 
 
 
 
312213e
6e35819
 
3a7a44c
8799a8e
 
 
 
 
 
 
 
 
 
 
3a7a44c
6e35819
 
 
e519933
5cca310
3a7a44c
 
5cca310
 
 
 
3a7a44c
5cca310
 
 
 
 
 
 
 
 
3a7a44c
 
 
 
0a408c8
8799a8e
0a408c8
8799a8e
 
 
 
 
ea4284c
0a408c8
8799a8e
0a408c8
 
3a7a44c
 
6e35819
 
 
3a7a44c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea4284c
3a7a44c
 
 
 
ea4284c
873b70f
 
 
 
ea4284c
 
312213e
873b70f
 
 
 
 
3a7a44c
 
 
 
 
 
 
 
 
 
 
 
 
 
5cca310
3a7a44c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea4284c
3a7a44c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e35819
 
 
 
 
312213e
 
 
 
 
 
 
 
 
 
 
 
 
0a408c8
 
3a7a44c
312213e
 
 
 
 
ea4284c
312213e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a7a44c
 
6e35819
 
e519933
3a7a44c
5f4f31d
 
 
3a7a44c
 
ac1fffc
3a7a44c
 
 
 
 
5f4f31d
6e35819
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import asyncio
import os
from contextlib import asynccontextmanager
from typing import Optional

import asyncpg
import psycopg2
from cachetools import TTLCache, cached
from dotenv import load_dotenv
import pandas as pd

# Global connection pool
load_dotenv()


@asynccontextmanager
async def get_async_connection(schema="talmudexplore", auto_commit=True):
    """
    Get a connection for the current request.

    Args:
        schema: Database schema to use
        auto_commit: If True (default), each statement auto-commits.
                     If False, requires explicit commit.
    """
    conn = None
    tx = None
    try:
        # Create a single connection without relying on a shared pool
        conn = await asyncpg.connect(
            database=os.getenv("pg_dbname"),
            user=os.getenv("pg_user"),
            password=os.getenv("pg_password"),
            host=os.getenv("pg_host"),
            port=os.getenv("pg_port")
        )
        await conn.execute(f'SET search_path TO {schema}')

        if not auto_commit:
            # Start a transaction that requires explicit commit
            tx = conn.transaction()
            await tx.start()
        yield conn
        if not auto_commit and tx:
            await tx.commit()
    finally:
        if conn:
            await conn.close()


async def get_questions(conn: asyncpg.Connection, source_finder_run_id: int, baseline_source_finder_run_id: int):
    questions = await conn.fetch("""
    select distinct q.id, question_text from talmudexplore.questions q
    join (select question_id from talmudexplore.source_finder_run_question_metadata where source_finder_run_id = $1) sfrqm1
        on sfrqm1.question_id = q.id
    join (select question_id from talmudexplore.source_finder_run_question_metadata where source_finder_run_id = $2) sfrqm2
        on sfrqm2.question_id = q.id;
    """, source_finder_run_id, baseline_source_finder_run_id)
    return [{"id": q["id"], "text": q["question_text"]} for q in questions]

@cached(cache=TTLCache(ttl=1800, maxsize=1024))
async def get_metadata(conn: asyncpg.Connection, question_id: int, source_finder_id_run_id: int):
    metadata = await conn.fetchrow('''
        SELECT metadata 
        FROM source_finder_run_question_metadata sfrqm                           
        WHERE sfrqm.question_id = $1 and sfrqm.source_finder_run_id = $2;
    ''', question_id, source_finder_id_run_id)
    if metadata is None:
        return ""
    return metadata.get('metadata')


# Get distinct source finders
async def get_source_finders(conn: asyncpg.Connection):
    finders = await conn.fetch("""
        SELECT distinct sf.id, sf.source_finder_type as name from talmudexplore.source_finder_runs sfr
        join talmudexplore.source_finders sf on sf.id = sfr.source_finder_id
        WHERE EXISTS (
            SELECT 1
            FROM talmudexplore.source_run_results srr
            WHERE srr.source_finder_run_id = sfr.id
        )
    ORDER BY sf.id
    """
    )
    return [{"id": f["id"], "name": f["name"]} for f in finders]


# Get distinct run IDs for a question
@cached(cache=TTLCache(ttl=1800, maxsize=1024))
async def get_run_ids(conn: asyncpg.Connection, source_finder_id: int, question_id: int = None):
    query = """
    select distinct sfr.description, srs.source_finder_run_id as run_id
        from source_run_results srs
        join source_finder_runs sfr on srs.source_finder_run_id = sfr.id
        join source_finders sf on sfr.source_finder_id = sf.id
        where sfr.source_finder_id = $1        
    """

    if question_id is not None:
        query += " and srs.question_id = $2"
        params = (source_finder_id, question_id)
    else:
        params = (source_finder_id,)
    query += " order by run_id DESC;"

    run_ids = await conn.fetch(query, *params)
    return {r["description"]:r["run_id"] for r in run_ids}


async def get_baseline_rankers(conn: asyncpg.Connection):
    query = """
    SELECT sfr.id, sf.source_finder_type, sfr.description from source_finder_runs sfr
    join source_finders sf on sf.id = sfr.source_finder_id
    WHERE EXISTS (
        SELECT 1
        FROM source_run_results srr
        WHERE srr.source_finder_run_id = sfr.id
    )
    ORDER BY sf.id DESC
    """

    rankers = await conn.fetch(query)
    return [{"id": r["id"], "name": f"{r['source_finder_type']} : {r['description']}"} for r in rankers]

async def calculate_baseline_vs_source_stats_for_question(conn: asyncpg.Connection, baseline_sources , source_runs_sources):
    # for a given question_id and source_finder_id and run_id calculate the baseline vs source stats
    # e.g. overlap, high ranked overlap, etc.

    actual_sources_set = {s["id"] for s in source_runs_sources}
    baseline_sources_set = {s["id"] for s in baseline_sources}

    # Calculate overlap
    overlap = actual_sources_set.intersection(baseline_sources_set)
    # only_in_1 = actual_sources_set - baseline_sources_set
    # only_in_2 = baseline_sources_set - actual_sources_set

    # Calculate high-ranked overlap (rank >= 4)
    actual_high_ranked = {s["id"] for s in source_runs_sources if int(s["source_rank"]) >= 4}
    baseline_high_ranked = {s["id"] for s in baseline_sources if int(s["baseline_rank"]) >= 4}

    high_ranked_overlap = actual_high_ranked.intersection(baseline_high_ranked)

    results = {
        "total_baseline_sources": len(baseline_sources),
        "total_found_sources": len(source_runs_sources),
        "overlap_count": len(overlap),
        "overlap_percentage": round(len(overlap) * 100 / max(len(actual_sources_set), len(baseline_sources_set)),
                                    2) if max(len(actual_sources_set), len(baseline_sources_set)) > 0 else 0,
        "num_high_ranked_baseline_sources": len(baseline_high_ranked),
        "num_high_ranked_found_sources": len(actual_high_ranked),
        "high_ranked_overlap_count": len(high_ranked_overlap),
        "high_ranked_overlap_percentage": round(len(high_ranked_overlap) * 100 / max(len(actual_high_ranked), len(baseline_high_ranked)), 2) if max(len(actual_high_ranked), len(baseline_high_ranked)) > 0 else 0
    }
    #convert results.csv to dataframe
    results_df = pd.DataFrame([results])
    return results_df


async def calculate_cumulative_statistics_for_all_questions(conn: asyncpg.Connection, question_ids, source_finder_run_id: int, ranker_id: int):
    """
    Calculate cumulative statistics across all questions for a specific source finder, run, and ranker.

    Args:
        conn (asyncpg.Connection): Database connection
        question_ids (list): List of question IDs to analyze
        source_finder_run_id (int): ID of the source finder and run as appears in source runs
        ranker_id (int): ID of the baseline ranker

    Returns:
        pd.DataFrame: DataFrame containing aggregated statistics
    """

    # Initialize aggregates
    total_baseline_sources = 0
    total_found_sources = 0
    total_overlap = 0
    total_high_ranked_baseline = 0
    total_high_ranked_found = 0
    total_high_ranked_overlap = 0

    # Process each question
    valid_questions = 0
    for question_id in question_ids:
        try:
            # Get unified sources for this question
            sources, stats = await get_unified_sources(conn, question_id, source_finder_run_id, ranker_id)

            if sources and len(sources) > 0:
                valid_questions += 1
                stats_dict = stats.iloc[0].to_dict()

                # Add to running totals
                total_baseline_sources += stats_dict.get('total_baseline_sources', 0)
                total_found_sources += stats_dict.get('total_found_sources', 0)
                total_overlap += stats_dict.get('overlap_count', 0)
                total_high_ranked_baseline += stats_dict.get('num_high_ranked_baseline_sources', 0)
                total_high_ranked_found += stats_dict.get('num_high_ranked_found_sources', 0)
                total_high_ranked_overlap += stats_dict.get('high_ranked_overlap_count', 0)
        except Exception as e:
            # Skip questions with errors
            continue

    # Calculate overall percentages
    overlap_percentage = round(total_overlap * 100 / max(total_baseline_sources, total_found_sources), 2) \
        if max(total_baseline_sources, total_found_sources) > 0 else 0

    high_ranked_overlap_percentage = round(
        total_high_ranked_overlap * 100 / max(total_high_ranked_baseline, total_high_ranked_found), 2) \
        if max(total_high_ranked_baseline, total_high_ranked_found) > 0 else 0

    # Compile results.csv
    cumulative_stats = {
        "total_questions_analyzed": valid_questions,
        "total_baseline_sources": total_baseline_sources,
        "total_found_sources": total_found_sources,
        "total_overlap_count": total_overlap,
        "overall_overlap_percentage": overlap_percentage,
        "total_high_ranked_baseline_sources": total_high_ranked_baseline,
        "total_high_ranked_found_sources": total_high_ranked_found,
        "total_high_ranked_overlap_count": total_high_ranked_overlap,
        "overall_high_ranked_overlap_percentage": high_ranked_overlap_percentage,
        "avg_baseline_sources_per_question": round(total_baseline_sources / valid_questions,
                                                   2) if valid_questions > 0 else 0,
        "avg_found_sources_per_question": round(total_found_sources / valid_questions,
                                                2) if valid_questions > 0 else 0
    }

    return pd.DataFrame([cumulative_stats])


async def get_unified_sources(conn: asyncpg.Connection, question_id: int, source_finder_run_id: int, ranker_id: int):
    """
    Create unified view of sources from both baseline_sources and source_runs
    with indicators of where each source appears and their respective ranks.
    """

    query_runs = """
                 SELECT tb.tractate_chunk_id as id,
                        sr.rank              as source_rank,
                        sr.tractate,
                        sr.folio,
                        sr.reason            as source_reason
                 FROM source_run_results sr
                          join talmud_bavli tb on sr.sugya_id = tb.xml_id
                 WHERE sr.question_id = $1
                   AND sr.source_finder_run_id = $2
                 """
    source_runs = await conn.fetch(query_runs, question_id, source_finder_run_id)
    # Get sources from baseline_sources
    baseline_query = query_runs.replace("source_rank", "baseline_rank")
    baseline_sources = await conn.fetch(baseline_query, question_id, ranker_id)
    stats_df = await calculate_baseline_vs_source_stats_for_question(conn, baseline_sources, source_runs)
    # Convert to dictionaries for easier lookup
    source_runs_dict = {s["id"]: dict(s) for s in source_runs}
    baseline_dict = {s["id"]: dict(s) for s in baseline_sources}
    # Get all unique sugya_ids
    all_sugya_ids = set(source_runs_dict.keys()) | set(baseline_dict.keys())
    # Build unified results.csv
    unified_results = []
    for sugya_id in all_sugya_ids:
        in_source_run = sugya_id in source_runs_dict
        in_baseline = sugya_id in baseline_dict
        if in_baseline:
            info = baseline_dict[sugya_id]
        else:
            info = source_runs_dict[sugya_id]
        result = {
            "id": sugya_id,
            "tractate": info.get("tractate"),
            "folio": info.get("folio"),
            "in_baseline": "Yes" if in_baseline else "No",
            "baseline_rank": baseline_dict.get(sugya_id, {}).get("baseline_rank", "N/A"),
            "in_source_run": "Yes" if in_source_run else "No",
            "source_run_rank": source_runs_dict.get(sugya_id, {}).get("source_rank", "N/A"),
            "source_reason": source_runs_dict.get(sugya_id, {}).get("reason", "N/A"),
            "metadata": source_runs_dict.get(sugya_id, {}).get("metadata", "")
        }
        unified_results.append(result)

    return unified_results, stats_df


@cached(cache=TTLCache(ttl=1800, maxsize=1024))
async def get_source_text(conn: asyncpg.Connection, tractate_chunk_id: int):
    """
    Retrieves the text content for a given tractate chunk ID.
    """

    query = """
    SELECT tb.text as text
    FROM talmud_bavli tb
    WHERE tb.tractate_chunk_id = $1
    """
    result = await conn.fetchrow(query, tractate_chunk_id)
    return result["text"] if result else "Source text not found"

def get_pg_sync_connection(schema="talmudexplore"):
    conn = psycopg2.connect(dbname=os.getenv("pg_dbname"),
        user=os.getenv("pg_user"),
        password=os.getenv("pg_password"),
        host=os.getenv("pg_host"),
        port=os.getenv("pg_port"),
        options=f"-c search_path={schema}")
    return conn