Spaces:
Running
Running
File size: 7,406 Bytes
dad00c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
def build_service_data(filename):
# Loading data directly with polars leads to errors
# Some rows end up missing for an unknown reason
# FIX: Load in pandas then convert to polars
service_data_pd = pd.read_csv(filename)
# Quick test to assure the unique key is in fact unique
assert service_data_pd["Unique Key"].nunique() == len(service_data_pd)
# Load from pandas Dataframe
service_data_pd["Incident Zip"] = service_data_pd["Incident Zip"].astype("string")
service_data_pd["BBL"] = service_data_pd["BBL"].astype("string")
service_data = pl.DataFrame(service_data_pd)
# Clear some ram
del service_data_pd
gc.collect()
drop_cols = [
"Unique Key", "Agency Name", "Location Type", "Incident Zip",
"Incident Address", "Street Name", "Cross Street 1",
"Cross Street 2", "Intersection Street 1", "Intersection Street 2",
"Address Type", "City", "Landmark", "Facility Type",
"Status", "Due Date", "Resolution Description",
"Resolution Action Updated Date", "Community Board",
"BBL", "X Coordinate (State Plane)", "Y Coordinate (State Plane)",
"Open Data Channel Type", "Park Facility Name", "Park Borough",
"Vehicle Type", "Taxi Company Borough", "Taxi Pick Up Location",
"Bridge Highway Name", "Bridge Highway Direction", "Road Ramp",
"Bridge Highway Segment", "Location", "Created Year"
]
# Drop columns and create the date variable
service_data = service_data.drop(drop_cols)
service_data = create_datetime(service_data, "Created Date")
service_data = create_datetime(service_data, "Closed Date")
# Group by date to get the number of Created tickets (as target)
sd_grouped = service_data.rename({"Created Date": "Datetime"}).group_by("Datetime").agg(
pl.len().alias("Target"),
).sort(by="Datetime")
# Calculate the number of closed tickets
# Mean diff used to filter service data
# mean_diff = service_data.with_columns(
# diff_created_closed = pl.col("Closed Date") - pl.col("Created Date")
# ).filter((pl.col("Closed Date").dt.year() >= 2016) & (pl.col("Closed Date").dt.year() < 2020))["diff_created_closed"].mean().days
# Mean diff precalculated as
mean_diff = 13
# Create new Closed date with errors filled using the mean diff above
service_data = service_data.with_columns(
Closed_Date_New = pl.when(pl.col("Created Date") - pl.col("Closed Date") > pl.duration(days=1))
.then(pl.col("Created Date") + pl.duration(days=mean_diff))
.otherwise(pl.col("Closed Date")).fill_null(pl.col("Created Date") + pl.duration(days=mean_diff))
)
# Filter tickets such that the closed date < the created date to prevent future data leakage in our dataset
# We want to make sure future data is not accidentally leaked across other points in our data
closed_tickets = service_data.group_by(["Closed_Date_New", "Created Date"]) \
.agg((pl.when(pl.col("Created Date") <= pl.col("Closed_Date_New")).then(1).otherwise(0)).sum().alias("count")) \
.sort("Closed_Date_New") \
.filter((pl.col("Closed_Date_New").dt.year() >= 2016) & (pl.col("Closed_Date_New").dt.year() < 2019)) \
.group_by("Closed_Date_New").agg(pl.col("count").sum().alias("num_closed_tickets"))
# Rename this column to num closed tickets
ct_df = closed_tickets.with_columns(
pl.col("num_closed_tickets")
)
# Concat the new columns into our data
sd_df = pl.concat([sd_grouped, ct_df.drop("Closed_Date_New")], how="horizontal")
assert len(sd_grouped) == len(ct_df)
# CATEGORICAL FEATURE MAPPING
# MAPPING FOR BOROUGH
Borough_Map = {
"Unspecified": "OTHER",
"2017": "OTHER",
None: "OTHER",
"2016": "OTHER"
}
service_data = service_data.with_columns(
pl.col("Borough").replace(Borough_Map)
)
# MAPPING FOR AGENCY
# This mapping was done Manually
Agency_Map = {
"NYPD": "Security", "HPD": "Buildings", "DOT": "Transportation",
"DSNY": "Environment & Sanitation", "DEP": "Environment & Sanitation",
"DOB": "Buildings", "DOE": "Buildings", "DPR": "Parks",
"DOHMH": "Health", "DOF": "Other", "DHS": "Security",
"TLC": "Transportation", "HRA": "Other", "DCA": "Other",
"DFTA": "Other", "EDC": "Other", "DOITT": "Other", "OMB": "Other",
"DCAS": "Other", "NYCEM": "Other", "ACS": "Other", "3-1-1": "Other",
"TAX": "Other", "DCP": "Other", "DORIS": "Other", "FDNY": "Other",
"TAT": "Other", "COIB": "Other", "CEO": "Other", "MOC": "Other",
}
service_data = service_data.with_columns(
pl.col("Agency").replace(Agency_Map).alias("AG") # AG Shorthand for Agency Groups
)
# Mapping for Descriptor using BERTopic
# Store descriptors as pandas dataframe (polars not supported)
# Drop any nan values, and we only care about the unique values
descriptor_docs = service_data["Descriptor"].unique().to_numpy()
# Build our topic mapping using the pretrained BERTopic model
# Load model and get predictions
topic_model = BERTopic.load("models/BERTopic")
topics, probs = topic_model.transform(descriptor_docs)
# Visualize if wanted
# topic_model.visualize_barchart(list(range(-1,6,1)))
# Create a topic to ID map
topic_df = topic_model.get_topic_info()
topic_id_map = {row["Topic"]: row["Name"][2:] for _, row in topic_df.iterrows()}
topic_id_map[-1] = topic_id_map[-1][1:] # Fix for the -1 topic case
# For each document (descriptor string) get a mapping of topics
doc_to_topic_map = defaultdict(str)
for topic_id, doc in zip(topics, descriptor_docs):
topic = topic_id_map[topic_id]
doc_to_topic_map[doc] = topic
service_data = service_data.with_columns(
pl.col("Descriptor").replace(doc_to_topic_map).alias("DG") # DG Shorthand for descriptor Groups
)
# One Hot Encode Features
cat_features = ["AG", "Borough", "DG"]
service_data = service_data.to_dummies(columns=cat_features)
# Group by Date and create our Category Feature Vector
cat_df = service_data.rename({"Created Date": "Datetime"}).group_by("Datetime").agg(
# Categorical Features Sum
pl.col('^AG_.*$').sum(),
pl.col('^Borough_.*$').sum(),
pl.col('^DG_.*$').sum(),
).sort(by="Datetime")
# Concat our category features to our current dataframe
sd_df = pl.concat([sd_df, cat_df.drop("Datetime")], how="horizontal")
# Now that our dataframe is significantly reduced in size
# We can finally convert back to a pandas dataframe
# as pandas is usable across more python packages
sd_df = sd_df.to_pandas()
# Set index to datetime
sd_df = sd_df.set_index("Datetime")
# NOTE we added 7 new rows to our weather df
# These 7 new rows will essentially be our final pred set
# The Target for these rows will be null -> indicating it needs to be predicted
# Add these rows to the service dataframe
preds_df = pd.DataFrame({'Datetime': pd.date_range(start=sd_df.index[-1], periods=8, freq='D')})[1:]
sd_df = pd.concat([sd_df, preds_df.set_index("Datetime")], axis=0)
return sd_df
|