File size: 42,369 Bytes
ba0ce5d 17aeee6 ba0ce5d 17aeee6 ba0ce5d 17aeee6 ba0ce5d cdbc268 ba0ce5d 17aeee6 ba0ce5d 17aeee6 ba0ce5d 17aeee6 ba0ce5d 17aeee6 ba0ce5d 17aeee6 e466982 17aeee6 e466982 17aeee6 e466982 ba0ce5d 17aeee6 ba0ce5d 17aeee6 ba0ce5d cdbc268 ba0ce5d cdbc268 ba0ce5d cdbc268 ba0ce5d 17aeee6 2c31d1f 17aeee6 2c31d1f ba0ce5d 17aeee6 ba0ce5d 17aeee6 ba0ce5d 17aeee6 ba0ce5d b2f617d e466982 b2f617d ba0ce5d cdbc268 17aeee6 e466982 17aeee6 ba0ce5d b2f617d ba0ce5d 17aeee6 ba0ce5d 17aeee6 ba0ce5d 17aeee6 ba0ce5d 17aeee6 ba0ce5d b2f617d ba0ce5d b2f617d ba0ce5d 17aeee6 ba0ce5d b2f617d ba0ce5d b2f617d ba0ce5d b2f617d ba0ce5d b2f617d ba0ce5d e466982 ba0ce5d 17aeee6 ba0ce5d e466982 ba0ce5d e466982 ba0ce5d e466982 ba0ce5d e466982 ba0ce5d e466982 ba0ce5d 17aeee6 ba0ce5d cdbc268 ba0ce5d 17aeee6 ba0ce5d cdbc268 ba0ce5d 17aeee6 ba0ce5d 088561c ba0ce5d 5579546 ba0ce5d be5264f ba0ce5d be5264f ba0ce5d be5264f ba0ce5d be5264f ba0ce5d 088561c 17aeee6 ba0ce5d be5264f ba0ce5d be5264f ba0ce5d be5264f ba0ce5d 17aeee6 ba0ce5d 17aeee6 ba0ce5d 17aeee6 ba0ce5d 17aeee6 cdbc268 17aeee6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 |
"""
This file defines a useful high-level abstraction to build Gradio chatbots: ChatInterface.
"""
from __future__ import annotations
import datetime
import functools
import inspect
import json
import random
import re
import uuid
from typing import AsyncGenerator, Callable, List, Literal, Union, cast
import anyio
from gradio.blocks import Blocks
from gradio.components import (
Button,
Chatbot,
Component,
Markdown,
MultimodalTextbox,
Slider,
State,
Textbox,
get_component_instance,
)
from gradio.events import Dependency, on
from gradio.helpers import Error, Info, special_args
from gradio.helpers import create_examples as Examples # noqa: N812
from gradio.layouts import Accordion, Group, Row
from gradio.routes import Request
from gradio.themes import ThemeClass as Theme
from gradio.utils import SyncToAsyncIterator, async_iteration, async_lambda
from gradio_client.documentation import document
from huggingface_hub import CommitScheduler
pattern = re.compile(r'<div class="message-identifier">(.*?)</div>', re.DOTALL)
PREFERENCE_TECHNIQUE_MAPPING = {"sft": "prompt", "dpo": "preference", "kto": "vibes"}
@document()
class ChatInterface(Blocks):
"""
ChatInterface is Gradio's high-level abstraction for creating chatbot UIs, and allows you to create
a web-based demo around a chatbot model in a few lines of code. Only one parameter is required: fn, which
takes a function that governs the response of the chatbot based on the user input and chat history. Additional
parameters can be used to control the appearance and behavior of the demo.
Example:
import gradio as gr
def echo(message, history):
return message
demo = gr.ChatInterface(fn=echo, examples=["hello", "hola", "merhaba"], title="Echo Bot")
demo.launch()
Demos: chatinterface_multimodal, chatinterface_random_response, chatinterface_streaming_echo
Guides: creating-a-chatbot-fast, sharing-your-app
"""
def __init__(
self,
fn: Callable,
*,
prefence_techniques: str | List[str] | None = None,
min_turns: int = 1,
max_turns: int = 1,
repo_id: None | str,
repo_private: bool = False,
multimodal: bool = False,
chatbot: Chatbot | None = None,
textbox: Textbox | MultimodalTextbox | None = None,
additional_inputs: str | Component | list[str | Component] | None = None,
additional_inputs_accordion_name: str | None = None,
additional_inputs_accordion: str | Accordion | None = None,
examples: list[str] | list[dict[str, str | list]] | list[list] | None = None,
cache_examples: bool | Literal["lazy"] | None = None,
examples_per_page: int = 10,
title: str | None = None,
description: str | None = None,
theme: Theme | str | None = None,
css: str | None = None,
js: str | None = None,
head: str | None = None,
analytics_enabled: bool | None = None,
autofocus: bool = True,
concurrency_limit: int | None | Literal["default"] = "default",
fill_height: bool = True,
delete_cache: tuple[int, int] | None = None,
):
"""
Parameters:
fn: The function to wrap the chat interface around. Should accept two parameters: a string input message and list of two-element lists of the form [[user_message, bot_message], ...] representing the chat history, and return a string response. See the Chatbot documentation for more information on the chat history format.
multimodal: If True, the chat interface will use a gr.MultimodalTextbox component for the input, which allows for the uploading of multimedia files. If False, the chat interface will use a gr.Textbox component for the input.
chatbot: An instance of the gr.Chatbot component to use for the chat interface, if you would like to customize the chatbot properties. If not provided, a default gr.Chatbot component will be created.
textbox: An instance of the gr.Textbox or gr.MultimodalTextbox component to use for the chat interface, if you would like to customize the textbox properties. If not provided, a default gr.Textbox or gr.MultimodalTextbox component will be created.
additional_inputs: An instance or list of instances of gradio components (or their string shortcuts) to use as additional inputs to the chatbot. If components are not already rendered in a surrounding Blocks, then the components will be displayed under the chatbot, in an accordion.
additional_inputs_accordion_name: Deprecated. Will be removed in a future version of Gradio. Use the `additional_inputs_accordion` parameter instead.
additional_inputs_accordion: If a string is provided, this is the label of the `gr.Accordion` to use to contain additional inputs. A `gr.Accordion` object can be provided as well to configure other properties of the container holding the additional inputs. Defaults to a `gr.Accordion(label="Additional Inputs", open=False)`. This parameter is only used if `additional_inputs` is provided.
examples: Sample inputs for the function; if provided, appear below the chatbot and can be clicked to populate the chatbot input. Should be a list of strings if `multimodal` is False, and a list of dictionaries (with keys `text` and `files`) if `multimodal` is True.
cache_examples: If True, caches examples in the server for fast runtime in examples. The default option in HuggingFace Spaces is True. The default option elsewhere is False.
examples_per_page: If examples are provided, how many to display per page.
title: a title for the interface; if provided, appears above chatbot in large font. Also used as the tab title when opened in a browser window.
description: a description for the interface; if provided, appears above the chatbot and beneath the title in regular font. Accepts Markdown and HTML content.
theme: Theme to use, loaded from gradio.themes.
css: Custom css as a string or path to a css file. This css will be included in the demo webpage.
js: Custom js as a string or path to a js file. The custom js should be in the form of a single js function. This function will automatically be executed when the page loads. For more flexibility, use the head parameter to insert js inside <script> tags.
head: Custom html to insert into the head of the demo webpage. This can be used to add custom meta tags, multiple scripts, stylesheets, etc. to the page.
analytics_enabled: Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable if defined, or default to True.
submit_btn: Text to display on the submit button. If None, no button will be displayed. If a Button object, that button will be used.
stop_btn: Text to display on the stop button, which replaces the submit_btn when the submit_btn or retry_btn is clicked and response is streaming. Clicking on the stop_btn will halt the chatbot response. If set to None, stop button functionality does not appear in the chatbot. If a Button object, that button will be used as the stop button.
retry_btn: Text to display on the retry button. If None, no button will be displayed. If a Button object, that button will be used.
undo_btn: Text to display on the delete last button. If None, no button will be displayed. If a Button object, that button will be used.
clear_btn: Text to display on the clear button. If None, no button will be displayed. If a Button object, that button will be used.
autofocus: If True, autofocuses to the textbox when the page loads.
concurrency_limit: If set, this is the maximum number of chatbot submissions that can be running simultaneously. Can be set to None to mean no limit (any number of chatbot submissions can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `.queue()`, which is 1 by default).
fill_height: If True, the chat interface will expand to the height of window.
delete_cache: A tuple corresponding [frequency, age] both expressed in number of seconds. Every `frequency` seconds, the temporary files created by this Blocks instance will be deleted if more than `age` seconds have passed since the file was created. For example, setting this to (86400, 86400) will delete temporary files every day. The cache will be deleted entirely when the server restarts. If None, no cache deletion will occur.
"""
if max_turns < min_turns:
raise ValueError("`max_turns` should be larger than `min_turns`")
if any([turn for turn in [max_turns, min_turns] if turn < 1]):
raise ValueError("`max_turns` should be larger than `min_turns`")
self.max_turns = max_turns
self.min_turns = min_turns
if isinstance(prefence_techniques, str):
prefence_techniques = [prefence_techniques]
elif prefence_techniques is None:
prefence_techniques = ["sft"]
self.prefence_techniques = [technique.lower() for technique in prefence_techniques]
optional_techniques = ["kto", "sft", "spin", "dpo", "simpo", "rlhf", "orpo"]
if any([technique for technique in self.prefence_techniques if technique not in optional_techniques]):
raise ValueError(f"Supported techniques are {optional_techniques}")
submit_btn_one = "Generate"
submit_btn_two = None
submit_btn_a = None
submit_btn_b = None
submit_btn_ab = None
submit_btn_good = None
submit_btn_bad = None
stop_btn = "Stop"
undo_btn = "↩️ Undo"
clear_btn = "🗑️ Clear"
if "kto" in prefence_techniques:
submit_btn_good = "The response 👍"
submit_btn_bad = "The response 👎"
if any([technique for technique in ["dpo", "simpo", "rlhf", "orpo"] if technique in self.prefence_techniques]):
submit_btn_two = None
submit_btn_a = "A is better than B"
submit_btn_b = "B is better than A"
submit_btn_ab = "A and B are similar"
super().__init__(
analytics_enabled=analytics_enabled,
mode="chat_interface",
css=css,
title=title or "Gradio",
theme=theme,
js=js,
head=head,
fill_height=fill_height,
delete_cache=delete_cache,
)
self.css = css
self.multimodal = multimodal
self.concurrency_limit = concurrency_limit
self.fn = fn
self.is_async = inspect.iscoroutinefunction(self.fn) or inspect.isasyncgenfunction(self.fn)
self.is_generator = inspect.isgeneratorfunction(self.fn) or inspect.isasyncgenfunction(self.fn)
self.buttons: list[Button | None] = []
self.examples = examples
self.cache_examples: bool | None | Literal["lazy"] = cache_examples
self._set_conversation_id()
if repo_id:
self.commit_scheduler = CommitScheduler(
repo_id=repo_id, folder_path="feedback", repo_type="dataset", private=repo_private, every=1
)
else:
self.commit_scheduler = None
if self.commit_scheduler:
self.data_file = self.commit_scheduler.folder_path / f"data_{uuid.uuid4()}.json"
slider_placeholder = Slider(label="generation", minimum=1.0, maximum=2.0, step=0.05, value=1.2, render=False)
if additional_inputs:
if not isinstance(additional_inputs, list):
additional_inputs = [slider_placeholder] + [additional_inputs]
else:
additional_inputs = [slider_placeholder] + additional_inputs
self.additional_inputs = [get_component_instance(i) for i in additional_inputs] # type: ignore
else:
self.additional_inputs = [slider_placeholder]
if additional_inputs_accordion_name is not None:
print(
"The `additional_inputs_accordion_name` parameter is deprecated and will be removed in a future version of Gradio. Use the `additional_inputs_accordion` parameter instead."
)
self.additional_inputs_accordion_params = {"label": additional_inputs_accordion_name}
if additional_inputs_accordion is None:
self.additional_inputs_accordion_params = {
"label": "Additional Inputs",
"open": False,
}
elif isinstance(additional_inputs_accordion, str):
self.additional_inputs_accordion_params = {"label": additional_inputs_accordion}
elif isinstance(additional_inputs_accordion, Accordion):
self.additional_inputs_accordion_params = additional_inputs_accordion.recover_kwargs(
additional_inputs_accordion.get_config()
)
else:
raise ValueError(
f"The `additional_inputs_accordion` parameter must be a string or gr.Accordion, not {type(additional_inputs_accordion)}"
)
with self:
if title:
Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{self.title}</h1>")
if self.commit_scheduler:
Markdown(
f'<center><h2>Data is being logged to <a href="https://huggingface.co/datasets/{self.commit_scheduler.repo_id}">a dataset on the Hugging Face Hub</a></h2></center>'
)
if description:
Markdown(description)
if chatbot:
self.chatbot = chatbot.render()
else:
self.chatbot = Chatbot(label="Chatbot", scale=1, height=200 if fill_height else None)
with Row():
for btn in [
submit_btn_a,
submit_btn_b,
submit_btn_ab,
submit_btn_good,
submit_btn_bad,
undo_btn,
clear_btn,
]:
if btn is not None:
if isinstance(btn, Button):
btn.render()
elif isinstance(btn, str):
btn = Button(btn, variant="secondary", size="sm", min_width=60)
else:
raise ValueError(
f"All the _btn parameters must be a gr.Button, string, or None, not {type(btn)}"
)
self.buttons.append(btn) # type: ignore
with Group():
with Row():
if textbox:
if self.multimodal:
submit_btn_one = None
submit_btn_two = None
else:
textbox.container = False
textbox.show_label = False
textbox_ = textbox.render()
if not isinstance(textbox_, (Textbox, MultimodalTextbox)):
raise TypeError(
f"Expected a gr.Textbox or gr.MultimodalTextbox component, but got {type(textbox_)}"
)
self.textbox = textbox_
elif self.multimodal:
submit_btn_one = None
submit_btn_two = None
self.textbox = MultimodalTextbox(
show_label=False,
label="Message",
placeholder="Type a message...",
scale=7,
autofocus=autofocus,
)
else:
self.textbox = Textbox(
container=False,
show_label=False,
label="Message",
placeholder="Type a message...",
scale=7,
autofocus=autofocus,
)
submit_buttons = []
for btn in [submit_btn_one, submit_btn_two]:
if btn is not None and not multimodal:
if isinstance(btn, Button):
btn.render()
elif isinstance(btn, str):
btn = Button(
btn,
variant="primary",
scale=1,
min_width=150,
)
else:
raise ValueError(
f"The submit_btn parameter must be a gr.Button, string, or None, not {type(btn)}"
)
submit_buttons.append(btn)
if stop_btn is not None:
if isinstance(stop_btn, Button):
stop_btn.visible = False
stop_btn.render()
elif isinstance(stop_btn, str):
stop_btn = Button(
stop_btn,
variant="stop",
visible=False,
scale=1,
min_width=150,
)
else:
raise ValueError(
f"The stop_btn parameter must be a gr.Button, string, or None, not {type(stop_btn)}"
)
self.buttons.extend(submit_buttons + [stop_btn]) # type: ignore
self.fake_api_btn = Button("Fake API", visible=False)
self.fake_response_textbox = Textbox(label="Response", visible=False)
(
self.submit_btn_a,
self.submit_btn_b,
self.submit_btn_ab,
self.submit_btn_good,
self.submit_btn_bad,
self.undo_btn,
self.clear_btn,
self.submit_btn_one,
self.submit_btn_two,
self.stop_btn,
) = self.buttons
if examples:
if self.is_generator:
examples_fn = self._examples_stream_fn
else:
examples_fn = self._examples_fn
self.examples_handler = Examples(
examples=examples,
inputs=[self.textbox] + self.additional_inputs,
outputs=self.chatbot,
fn=examples_fn,
cache_examples=self.cache_examples,
_defer_caching=True,
examples_per_page=examples_per_page,
)
any_unrendered_inputs = any(not inp.is_rendered for inp in self.additional_inputs)
if self.additional_inputs and any_unrendered_inputs:
with Accordion(**self.additional_inputs_accordion_params): # type: ignore
for input_component in self.additional_inputs:
if not input_component.is_rendered:
input_component.render()
# The example caching must happen after the input components have rendered
if examples:
self.examples_handler._start_caching()
self.saved_input = State()
self.chatbot_state = State(self.chatbot.value) if self.chatbot.value else State([])
self._setup_events()
self._setup_api()
def _set_conversation_id(self):
self._conversation_id = str(uuid.uuid4())
def _save_feedback(self, item):
feedback = {
"timestamp": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"conversation_id": self._conversation_id,
}
feedback.update(item)
if self.commit_scheduler:
with self.commit_scheduler.lock:
with self.data_file.open("a") as f:
f.write(json.dumps(feedback))
def _setup_events(self) -> None:
submit_fn_one = self._stream_fn if self.is_generator else self._submit_fn
submit_fn_one_partial = functools.partial(submit_fn_one, n_generations=2)
submit_triggers_one = (
[self.textbox.submit, self.submit_btn_one.click] if self.submit_btn_one else [self.textbox.submit]
)
submit_tuples = [(submit_fn_one_partial, submit_triggers_one)]
if self.submit_btn_two:
submit_fn_two = functools.partial(submit_fn_one, n_generations=1)
submit_triggers_two = [self.submit_btn_two.click]
submit_tuples.append((submit_fn_two, submit_triggers_two))
for _fn, _triggers in submit_tuples:
submit_event = (
on(
_triggers,
self._clear_and_save_textbox,
[self.textbox],
[self.textbox, self.saved_input],
show_api=False,
queue=False,
)
.then(
self._display_input,
[self.saved_input, self.chatbot_state],
[self.chatbot, self.chatbot_state],
show_api=False,
queue=False,
)
.then(
_fn,
[self.saved_input, self.chatbot_state] + self.additional_inputs,
[self.chatbot, self.chatbot_state],
show_api=False,
concurrency_limit=cast(Union[int, Literal["default"], None], self.concurrency_limit),
)
)
self._setup_stop_events(_triggers, submit_event)
partial_fn_a, partial_fn_b, partial_fn_ab, partial_fn_good, partial_fn_bad = (
functools.partial(self._log_fn, log="a"),
functools.partial(self._log_fn, log="b"),
functools.partial(self._log_fn, log="ab"),
functools.partial(self._log_fn, log="good"),
functools.partial(self._log_fn, log="bad"),
)
for _fn, _btn in [
(partial_fn_a, self.submit_btn_a),
(partial_fn_b, self.submit_btn_b),
(partial_fn_ab, self.submit_btn_ab),
(partial_fn_good, self.submit_btn_good),
(partial_fn_bad, self.submit_btn_bad),
]:
if _btn:
_btn.click(
_fn,
[self.saved_input, self.chatbot_state],
[self.chatbot, self.saved_input, self.chatbot_state],
show_api=False,
queue=False,
).then(
async_lambda(lambda x: x),
[self.saved_input],
[self.textbox],
show_api=False,
queue=False,
)
if self.undo_btn:
self.undo_btn.click(
self._delete_prev_fn,
[self.saved_input, self.chatbot_state],
[self.chatbot, self.saved_input, self.chatbot_state],
show_api=False,
queue=False,
).then(
async_lambda(lambda x: x),
[self.saved_input],
[self.textbox],
show_api=False,
queue=False,
)
if self.clear_btn:
self.clear_btn.click(
self._clear_fn,
[self.saved_input, self.chatbot_state],
[self.chatbot, self.saved_input, self.chatbot_state],
show_api=False,
queue=False,
).then(
async_lambda(lambda x: x),
[self.saved_input],
[self.textbox],
show_api=False,
queue=False,
)
def _setup_stop_events(self, event_triggers: list[Callable], event_to_cancel: Dependency) -> None:
if self.stop_btn and self.is_generator:
if self.submit_btn_one:
for event_trigger in event_triggers:
event_trigger(
async_lambda(
lambda: (
Button(visible=False),
Button(visible=True),
)
),
None,
[self.submit_btn_one, self.stop_btn],
show_api=False,
queue=False,
)
event_to_cancel.then(
async_lambda(lambda: (Button(visible=True), Button(visible=False))),
None,
[self.submit_btn_one, self.stop_btn],
show_api=False,
queue=False,
)
else:
for event_trigger in event_triggers:
event_trigger(
async_lambda(lambda: Button(visible=True)),
None,
[self.stop_btn],
show_api=False,
queue=False,
)
event_to_cancel.then(
async_lambda(lambda: Button(visible=False)),
None,
[self.stop_btn],
show_api=False,
queue=False,
)
self.stop_btn.click(
None,
None,
None,
cancels=event_to_cancel,
show_api=False,
)
def _setup_api(self) -> None:
if self.is_generator:
@functools.wraps(self.fn)
async def api_fn(message, history, *args, **kwargs): # type: ignore
if self.is_async:
generator = self.fn(message, history, *args, **kwargs)
else:
generator = await anyio.to_thread.run_sync(
self.fn, message, history, *args, **kwargs, limiter=self.limiter
)
generator = SyncToAsyncIterator(generator, self.limiter)
try:
first_response = await async_iteration(generator)
yield first_response, history + [[message, first_response]]
except StopIteration:
yield None, history + [[message, None]]
async for response in generator:
yield response, history + [[message, response]]
else:
@functools.wraps(self.fn)
async def api_fn(message, history, *args, **kwargs):
if self.is_async:
response = await self.fn(message, history, *args, **kwargs)
else:
response = await anyio.to_thread.run_sync(
self.fn, message, history, *args, **kwargs, limiter=self.limiter
)
history.append([message, response])
return response, history
self.fake_api_btn.click(
api_fn,
[self.textbox, self.chatbot_state] + self.additional_inputs,
[self.textbox, self.chatbot_state],
api_name="chat",
concurrency_limit=cast(Union[int, Literal["default"], None], self.concurrency_limit),
)
def _clear_and_save_textbox(self, message: str) -> tuple[str | dict, str]:
if self.multimodal:
return {"text": "", "files": []}, message
else:
return "", message
def _append_multimodal_history(
self,
message: dict[str, list],
response: str | None,
history: list[list[str | tuple | None]],
):
for x in message["files"]:
history.append([(x,), None])
if message["text"] is None or not isinstance(message["text"], str):
return
elif message["text"] == "" and message["files"] != []:
history.append([None, response])
else:
history.append([message["text"], response])
async def _display_input(
self, message: str | dict[str, list], history: list[list[str | tuple | None]]
) -> tuple[list[list[str | tuple | None]], list[list[str | tuple | None]]]:
if self.multimodal and isinstance(message, dict):
self._append_multimodal_history(message, None, history)
elif isinstance(message, str):
history.append([message, None])
return history, history
def _get_conversation_from_history(self, history):
conversation = ""
history[-1] = [history[-1][0], ""]
for idx, turn in enumerate(history):
conversation += self._get_chat_message(turn[0], role="system", turn=(idx + 1))
if turn[-1]:
conversation += self._get_chat_message(turn[-1], role="user", turn=(idx + 1))
return "<body>" + self.css + conversation + "</body>"
def _get_conversation_in_openai_format(self, history):
conversation = []
for idx, turn in enumerate(history):
roles = ["user", "assistant"]
if idx == len(turn) - 1:
roles = ["user"]
for role, content in zip(roles, turn):
conversation.append({"role": role, "content": content})
return conversation
@staticmethod
def _get_chat_message(message, role, turn):
# return f"<p><div class='message-identifier'>{message}</div></p>"
return (
'<div class="message-content">'
+ f"<strong>Option {turn} - </strong><br>"
+ f"<em>Length: {len(message)} characters</em><br><br>"
+ f'<div class="message-identifier">{message}</div>'
+ "</div>"
)
def _get_chat_message_comparison(self, content_a, content_b):
return (
'<div class="container" style="display: flex; width: 100%;">'
+ '<div class="column" style="flex: 1; padding: 10px;">'
+ self._get_chat_message(message=content_a, role="system", turn="A")
+ "</div>"
+ '<div class="column" style="flex: 1; padding: 10px;">'
+ self._get_chat_message(message=content_b, role="system", turn="B")
+ "</div>"
+ "</div>"
)
@staticmethod
def _check_if_two_responses(response):
if response:
matches = pattern.findall(response)
return matches
def _check_num_turns(self, history, generate=True):
if generate:
if len(history) >= self.max_turns:
raise Error(
f"We intend to collect conversations with a maximum of {self.max_turns}, please clear or log info first."
)
return history, history
else:
if len(history) < self.min_turns:
raise Error(
f"We intend to collect conversations with at least of {self.min_turns}, please continue the conversation first."
)
return history, history
@staticmethod
def _check_message(message):
if not message:
raise Error("Make sure to provide a message next time.")
async def _submit_fn(
self,
message: str | dict[str, list],
history_with_input: list[list[str | tuple | None]],
request: Request,
*args,
n_generations: int,
) -> tuple[list[list[str | tuple | None]], list[list[str | tuple | None]]]:
if self.multimodal and isinstance(message, dict):
remove_input = len(message["files"]) + 1 if message["text"] is not None else len(message["files"])
history = history_with_input[:-remove_input]
else:
history = history_with_input[:-1]
self._check_message(message)
self._check_num_turns(history)
_, response = history_with_input[-1]
if self._check_if_two_responses(response):
raise Error("Two options detected: undo, log or random pick continuation.")
inputs, _, _ = special_args(self.fn, inputs=[message, history, *args], request=request)
async def _get_response():
if self.is_async:
response = await self.fn(*inputs)
else:
response = await anyio.to_thread.run_sync(self.fn, *inputs, limiter=self.limiter)
return response
if n_generations == 1:
response = await _get_response()
else:
response_one, response_two = await _get_response(), await _get_response()
response = self._get_chat_message_comparison(response_one, response_two)
if self.multimodal and isinstance(message, dict):
self._append_multimodal_history(message, response, history)
elif isinstance(message, str):
history.append([message, response])
return history, history
async def _stream_fn(
self,
message: str | dict[str, list],
history_with_input: list[list[str | tuple | None]],
request: Request,
*args,
n_generations: int,
) -> AsyncGenerator:
if self.multimodal and isinstance(message, dict):
remove_input = len(message["files"]) + 1 if message["text"] is not None else len(message["files"])
history = history_with_input[:-remove_input]
else:
history = history_with_input[:-1]
self._check_message(message)
self._check_num_turns(history)
_, response = history_with_input[-1]
if self._check_if_two_responses(response):
raise Error("Two options detected: undo, log or random pick continuation.")
inputs, _, _ = special_args(self.fn, inputs=[message, history, *args], request=request)
try:
if self.is_async:
generator = self.fn(*inputs)
else:
generator = await anyio.to_thread.run_sync(self.fn, *inputs, limiter=self.limiter)
generator = SyncToAsyncIterator(generator, self.limiter)
first_response = await async_iteration(generator)
if n_generations == 2:
first_response_formatted = self._get_chat_message_comparison(first_response, "")
else:
first_response_formatted = first_response
if self.multimodal and isinstance(message, dict):
for x in message["files"]:
history.append([(x,), None])
update = history + [[message["text"], first_response_formatted]]
yield update, update
else:
update = history + [[message, first_response_formatted]]
yield update, update
except StopIteration:
if self.multimodal and isinstance(message, dict):
self._append_multimodal_history(message, None, history)
yield history, history
else:
update = history + [[message, None]]
yield update, update
async for response in generator:
if n_generations == 2:
response_formatted = self._get_chat_message_comparison(response, "")
else:
response_formatted = response
if self.multimodal and isinstance(message, dict):
update = history + [[message["text"], response_formatted]]
yield update, update
else:
update = history + [[message, response_formatted]]
yield update, update
if n_generations == 2:
if self.is_async:
generator_two = self.fn(*inputs)
else:
generator_two = await anyio.to_thread.run_sync(self.fn, *inputs, limiter=self.limiter)
generator_two = SyncToAsyncIterator(generator_two, self.limiter)
try:
first_response_two = await async_iteration(generator_two)
first_response_two_formatted = self._get_chat_message_comparison(response, first_response_two)
if self.multimodal and isinstance(message, dict):
for x in message["files"]:
history.append([(x,), None])
update = history + [[message["text"], first_response_two_formatted]]
yield update, update
else:
update = history + [[message, first_response_two_formatted]]
yield update, update
except StopIteration:
if self.multimodal and isinstance(message, dict):
self._append_multimodal_history(message, None, history)
yield history, history
else:
update = history + [[message, None]]
yield update, update
async for response_two in generator_two:
response_two = self._get_chat_message_comparison(response, response_two)
if self.multimodal and isinstance(message, dict):
update = history + [[message["text"], response_two]]
yield update, update
else:
update = history + [[message, response_two]]
yield update, update
async def _log_fn(
self, message: str | dict[str, list], history: list[list[str | tuple | None]], log: str
) -> tuple[
list[list[str | tuple | None]],
str | dict[str, list],
list[list[str | tuple | None]],
]:
self._check_num_turns(history, generate=False)
history_as_openai_format = self._get_conversation_in_openai_format(history)
feedback = {"prompt": history_as_openai_format}
prompt, response = history[-1]
matches = self._check_if_two_responses(response)
if matches and log != "prompt":
option_a, option_b = matches[0], matches[1]
if log == "a":
chosen, rejected = option_a, option_b
Info("Logged preference: a")
elif log == "b":
chosen, rejected = option_b, option_a
Info("Logged preference: b")
elif log == "ab":
options = [option_a, option_b]
chosen, rejected = random.choice([options])
Info("Picked random response to continue")
if log in ["a", "b"] and self.commit_scheduler:
feedback.update(
{
"chosen": [{"content": chosen, "role": "assistant"}],
"rejected": [{"content": rejected, "role": "assistant"}],
}
)
self._save_feedback(feedback)
elif log == "ab":
self._save_feedback(feedback)
history[-1] = [prompt, chosen]
return history, message or "", history
elif log in ["conversation", "good", "bad"]:
feedback.update({"response": response})
if log == "good":
feedback.update({"label": True})
elif log == "bad":
feedback.update({"label": False})
Info("Logged conversation")
self._save_feedback(feedback)
return history, "", history
else:
raise Error("Error in code w.r.t logging.")
async def _examples_fn(self, message: str, *args) -> list[list[str | None]]:
inputs, _, _ = special_args(self.fn, inputs=[message, [], *args], request=None)
if self.is_async:
response = await self.fn(*inputs)
else:
response = await anyio.to_thread.run_sync(self.fn, *inputs, limiter=self.limiter)
return [[message, response]]
async def _examples_stream_fn(
self,
message: str,
*args,
) -> AsyncGenerator:
inputs, _, _ = special_args(self.fn, inputs=[message, [], *args], request=None)
if self.is_async:
generator = self.fn(*inputs)
else:
generator = await anyio.to_thread.run_sync(self.fn, *inputs, limiter=self.limiter)
generator = SyncToAsyncIterator(generator, self.limiter)
async for response in generator:
yield [[message, response]]
async def _delete_prev_fn(
self,
message: str | dict[str, list],
history: list[list[str | tuple | None]],
) -> tuple[
list[list[str | tuple | None]],
str | dict[str, list],
list[list[str | tuple | None]],
]:
if self.multimodal and isinstance(message, dict):
remove_input = len(message["files"]) + 1 if message["text"] is not None else len(message["files"])
history = history[:-remove_input]
else:
history = history[:-1]
return history, message or "", history
async def _clear_fn(
self,
message: str | dict[str, list],
history: list[list[str | tuple | None]],
) -> tuple[
list[list[str | tuple | None]],
str | dict[str, list],
list[list[str | tuple | None]],
]:
if history:
_, response = history[-1]
if self._check_if_two_responses(response):
raise Error("First log preference or continue random.")
else:
await self._log_fn(message=message, history=history, log="prompt")
self._set_conversation_id()
return [], "", []
else:
return [], "", []
|