File size: 6,352 Bytes
8824f88 c4bb11b 8824f88 af2fa59 c4bb11b 8824f88 c4bb11b 8824f88 c4bb11b 0737a9d 34353a1 0737a9d 8824f88 c4bb11b 8824f88 c4bb11b 8824f88 c4bb11b 8824f88 c4bb11b 8824f88 07a5727 af2fa59 c4bb11b 8824f88 c4bb11b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
#!/usr/bin/env python
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))
if torch.cuda.is_available():
model_id = "davidberenstein1957/ultra-feedback-dutch-cleaned-hq-spin-geitje-7b-ultra-sft_iter2"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.06,
top_p: float = 0.95,
top_k: int = 40,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(height=450,
label="GEITje-chat-v2",
show_share_button=True,
avatar_images=(None, 'geitje-logo.jpg')),
# textbox=gr.Textbox(value="Typ een bericht…"),
cache_examples=False,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.05,
maximum=1.2,
step=0.05,
value=0.2,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
examples=[
["""Vraagje: welk woord hoort er niet in dit rijtje thuis: "auto, vliegtuig, geit, bus"?"""],
["Schrijf een nieuwsbericht voor De Speld over de inzet van een kudde geiten door het Nederlands Forensisch Instituut"],
["Wat zijn 3 leuke dingen om te doen als ik een weekendje naar Friesland ga?"],
["Met wie trad clown Bassie op?"],
["Kan je naar de maan fietsen?"],
["Wat is het belang van open source taalmodellen?"],
["""```
Wortelverkopers krijgen miljoenenboete voor ongeoorloofd samenspannen
Door onze economieredactie
14 dec 2023 om 12:58
Update: 20 uur geleden
162 reacties
Delen
Toezichthouder ACM heeft een Nederlands wortelkartel aangepakt. Vier telers en verkopers van wortelen krijgen samen ruim 2,5 miljoen euro boete vanwege ongeoorloofde afspraken over het verdelen van de markt.
Het gaat om telers en verkopers Laarakker, VanRijsingen, Veco en Verduyn. De vier bedrijven verkopen waspeen en Parijse wortelen aan conserven- en diepvriesfabrikanten in Nederland, België en Duitsland. Waspeen wordt vaak verkocht in potten of blikken in een mix met erwtjes.
De vier bedrijven hadden in 2018 afgesproken dat ze tien jaar lang niet overal de concurrentie met elkaar zouden aangaan. Zo zou Veco tien jaar lang geen waspeen telen of verkopen. Daarnaast zouden Laarakker, VanRijsingen en Verduyn juist de Parijse wortelen links laten liggen.
Ook betaalden de andere wortelverkopers Veco ter compensatie van de afspraken. Laarakker en Veco maakten ook nog afzonderlijke afspraken over de levering van Parijse wortelen aan Duitse klanten.
Zulke afspraken zijn verboden. Als concurrentie door die samenwerking achterwege blijft en er dus sprake is van een kartel, betalen kopers mogelijk een hogere prijs, stelt de ACM.
Twee van de wortelbedrijven werkten mee door meer informatie over de ongeoorloofde afspraken te delen met de toezichthouder. Daardoor kregen zij een lagere boete.
```
Vat bovenstaand artikel samen"""]
],
title="🐐🕷️ GEITje 7B Spin Iter 2 🕷️🐐",
description="""\
<a href="https://huggingface.co/davidberenstein1957/ultra-feedback-dutch-cleaned-hq-spin-geitje-7b-ultra-sft_iter1">GEITje 7B SPIN iter 2</a> is een geavanceerde versie van GEITje, verder getraind op uitgebreide chat datasets en ook op een preferentiedataset om beter te aligneren met het gedrag van een gewenste chatbot op basis van het [SPIN algoritme en code](https://github.com/argilla-io/distilabel-spin-dibt/), in dit geval gpt-4-turbo. De data is net iets anders dan de originele dataset want we hebben de schoonmaak voor UltraFeedback gebruikt van Argilla, de uiteindelijke dataset is [hier](https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch_cleaned) te vinden.
""",,
submit_btn="Genereer",
stop_btn="Stop",
retry_btn="🔄 Opnieuw",
undo_btn="↩️ Ongedaan maken",
clear_btn="🗑️ Wissen",
)
with gr.Blocks(css="style.css") as demo:
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch() |