Spaces:
Sleeping
Sleeping
File size: 8,552 Bytes
24de7c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import requests
import json
import re
from urllib.parse import quote
def extract_between_tags(text, start_tag, end_tag):
start_index = text.find(start_tag)
end_index = text.find(end_tag, start_index)
return text[start_index+len(start_tag):end_index-len(end_tag)]
class CitationNormalizer():
def __init__(self, responses, docs):
self.docs = docs
self.responses = responses
self.refs = []
def normalize_citations(self, summary):
start_tag = "%START_SNIPPET%"
end_tag = "%END_SNIPPET%"
# find all references in the summary
pattern = r'\[\d{1,2}\]'
matches = [match.span() for match in re.finditer(pattern, summary)]
# figure out unique list of references
for match in matches:
start, end = match
response_num = int(summary[start+1:end-1])
doc_num = self.responses[response_num-1]['documentIndex']
metadata = {item['name']: item['value'] for item in self.docs[doc_num]['metadata']}
text = extract_between_tags(self.responses[response_num-1]['text'], start_tag, end_tag)
if 'url' in metadata.keys():
url = f"{metadata['url']}#:~:text={quote(text)}"
if url not in self.refs:
self.refs.append(url)
# replace references with markdown links
refs_dict = {url:(inx+1) for inx,url in enumerate(self.refs)}
for match in reversed(matches):
start, end = match
response_num = int(summary[start+1:end-1])
doc_num = self.responses[response_num-1]['documentIndex']
metadata = {item['name']: item['value'] for item in self.docs[doc_num]['metadata']}
text = extract_between_tags(self.responses[response_num-1]['text'], start_tag, end_tag)
if 'url' in metadata.keys():
url = f"{metadata['url']}#:~:text={quote(text)}"
citation_inx = refs_dict[url]
summary = summary[:start] + f'[\[{citation_inx}\]]({url})' + summary[end:]
else:
summary = summary[:start] + summary[end:]
return summary
class VectaraQuery():
def __init__(self, api_key: str, customer_id: str, corpus_ids: list[str], prompt_name: str = None):
self.customer_id = customer_id
self.corpus_ids = corpus_ids
self.api_key = api_key
self.prompt_name = prompt_name if prompt_name else "vectara-experimental-summary-ext-2023-12-11-sml"
self.conv_id = None
def get_body(self, query_str: str):
corpora_key_list = [{
'customer_id': self.customer_id, 'corpus_id': corpus_id, 'lexical_interpolation_config': {'lambda': 0.025}
} for corpus_id in self.corpus_ids
]
return {
'query': [
{
'query': query_str,
'start': 0,
'numResults': 50,
'corpusKey': corpora_key_list,
'context_config': {
'sentences_before': 2,
'sentences_after': 2,
'start_tag': "%START_SNIPPET%",
'end_tag': "%END_SNIPPET%",
},
'rerankingConfig':
{
'rerankerId': 272725718,
'mmrConfig': {
'diversityBias': 0.3
}
},
'summary': [
{
'responseLang': 'eng',
'maxSummarizedResults': 5,
'summarizerPromptName': self.prompt_name,
'chat': {
'store': True,
'conversationId': self.conv_id
},
}
]
}
]
}
def get_headers(self):
return {
"Content-Type": "application/json",
"Accept": "application/json",
"customer-id": self.customer_id,
"x-api-key": self.api_key,
"grpc-timeout": "60S"
}
def submit_query(self, query_str: str):
endpoint = f"https://api.vectara.io/v1/query"
body = self.get_body(query_str)
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers())
if response.status_code != 200:
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
return "Sorry, something went wrong in my brain. Please try again later."
res = response.json()
top_k = 10
summary = res['responseSet'][0]['summary'][0]['text']
responses = res['responseSet'][0]['response'][:top_k]
docs = res['responseSet'][0]['document']
chat = res['responseSet'][0]['summary'][0].get('chat', None)
if chat and chat['status'] is not None:
st_code = chat['status']
print(f"Chat query failed with code {st_code}")
if st_code == 'RESOURCE_EXHAUSTED':
self.conv_id = None
return 'Sorry, Vectara chat turns exceeds plan limit.'
return 'Sorry, something went wrong in my brain. Please try again later.'
self.conv_id = chat['conversationId'] if chat else None
summary = CitationNormalizer(responses, docs).normalize_citations(summary)
return summary
def submit_query_streaming(self, query_str: str):
endpoint = f"https://api.vectara.io/v1/stream-query"
body = self.get_body(query_str)
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers(), stream=True)
if response.status_code != 200:
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
return "Sorry, something went wrong in my brain. Please try again later."
chunks = []
accumulated_text = "" # Initialize text accumulation
pattern_max_length = 50 # Example heuristic
for line in response.iter_lines():
if line: # filter out keep-alive new lines
data = json.loads(line.decode('utf-8'))
res = data['result']
response_set = res['responseSet']
if response_set is None:
# grab next chunk and yield it as output
summary = res.get('summary', None)
if summary is None or len(summary)==0:
continue
else:
chat = summary.get('chat', None)
if chat and chat.get('status', None):
st_code = chat['status']
print(f"Chat query failed with code {st_code}")
if st_code == 'RESOURCE_EXHAUSTED':
self.conv_id = None
return 'Sorry, Vectara chat turns exceeds plan limit.'
return 'Sorry, something went wrong in my brain. Please try again later.'
conv_id = chat.get('conversationId', None) if chat else None
if conv_id:
self.conv_id = conv_id
chunk = summary['text']
accumulated_text += chunk # Append current chunk to accumulation
if len(accumulated_text) > pattern_max_length:
accumulated_text = re.sub(r"\[\d+\]", "", accumulated_text)
accumulated_text = re.sub(r"\s+\.", ".", accumulated_text)
out_chunk = accumulated_text[:-pattern_max_length]
chunks.append(out_chunk)
yield out_chunk
accumulated_text = accumulated_text[-pattern_max_length:]
if summary['done']:
break
# yield the last piece
if len(accumulated_text) > 0:
accumulated_text = re.sub(r" \[\d+\]\.", ".", accumulated_text)
chunks.append(accumulated_text)
yield accumulated_text
return ''.join(chunks) |