File size: 8,552 Bytes
24de7c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import requests
import json
import re
from urllib.parse import quote

def extract_between_tags(text, start_tag, end_tag):
    start_index = text.find(start_tag)
    end_index = text.find(end_tag, start_index)
    return text[start_index+len(start_tag):end_index-len(end_tag)]

class CitationNormalizer():

    def __init__(self, responses, docs):
        self.docs = docs
        self.responses = responses
        self.refs = []

    def normalize_citations(self, summary):
        start_tag = "%START_SNIPPET%"
        end_tag = "%END_SNIPPET%"

        # find all references in the summary
        pattern = r'\[\d{1,2}\]'
        matches = [match.span() for match in re.finditer(pattern, summary)]

        # figure out unique list of references
        for match in matches:
            start, end = match
            response_num = int(summary[start+1:end-1])
            doc_num = self.responses[response_num-1]['documentIndex']
            metadata = {item['name']: item['value'] for item in self.docs[doc_num]['metadata']}
            text = extract_between_tags(self.responses[response_num-1]['text'], start_tag, end_tag)
            if 'url' in metadata.keys():
                url = f"{metadata['url']}#:~:text={quote(text)}"
                if url not in self.refs:
                    self.refs.append(url)

        # replace references with markdown links
        refs_dict = {url:(inx+1) for inx,url in enumerate(self.refs)}
        for match in reversed(matches):
            start, end = match
            response_num = int(summary[start+1:end-1])
            doc_num = self.responses[response_num-1]['documentIndex']
            metadata = {item['name']: item['value'] for item in self.docs[doc_num]['metadata']}
            text = extract_between_tags(self.responses[response_num-1]['text'], start_tag, end_tag)
            if 'url' in metadata.keys():
                url = f"{metadata['url']}#:~:text={quote(text)}"
                citation_inx = refs_dict[url]
                summary = summary[:start] + f'[\[{citation_inx}\]]({url})' + summary[end:]
            else:
                summary = summary[:start] + summary[end:]

        return summary

class VectaraQuery():
    def __init__(self, api_key: str, customer_id: str, corpus_ids: list[str], prompt_name: str = None):
        self.customer_id = customer_id
        self.corpus_ids = corpus_ids
        self.api_key = api_key
        self.prompt_name = prompt_name if prompt_name else "vectara-experimental-summary-ext-2023-12-11-sml"
        self.conv_id = None

    def get_body(self, query_str: str):
        corpora_key_list = [{
                'customer_id': self.customer_id, 'corpus_id': corpus_id, 'lexical_interpolation_config': {'lambda': 0.025}
            } for corpus_id in self.corpus_ids
        ]

        return {
            'query': [
                { 
                    'query': query_str,
                    'start': 0,
                    'numResults': 50,
                    'corpusKey': corpora_key_list,
                    'context_config': {
                        'sentences_before': 2,
                        'sentences_after': 2,
                        'start_tag': "%START_SNIPPET%",
                        'end_tag': "%END_SNIPPET%",
                    },
                    'rerankingConfig':
                    {
                        'rerankerId': 272725718,
                        'mmrConfig': {
                            'diversityBias': 0.3
                        }
                    },
                    'summary': [
                        {
                            'responseLang': 'eng',
                            'maxSummarizedResults': 5,
                            'summarizerPromptName': self.prompt_name,
                            'chat': {
                                'store': True,
                                'conversationId': self.conv_id
                            },
                        }
                    ]
                } 
            ]
        }

    def get_headers(self):
        return {
            "Content-Type": "application/json",
            "Accept": "application/json",
            "customer-id": self.customer_id,
            "x-api-key": self.api_key,
            "grpc-timeout": "60S"
        }

    def submit_query(self, query_str: str):

        endpoint = f"https://api.vectara.io/v1/query"
        body = self.get_body(query_str)

        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers())    
        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            return "Sorry, something went wrong in my brain. Please try again later."

        res = response.json()

        top_k = 10
        summary = res['responseSet'][0]['summary'][0]['text']
        responses = res['responseSet'][0]['response'][:top_k]
        docs = res['responseSet'][0]['document']
        chat = res['responseSet'][0]['summary'][0].get('chat', None)

        if chat and chat['status'] is not None:
            st_code = chat['status']
            print(f"Chat query failed with code {st_code}")
            if st_code == 'RESOURCE_EXHAUSTED':
                self.conv_id = None
                return 'Sorry, Vectara chat turns exceeds plan limit.'
            return 'Sorry, something went wrong in my brain. Please try again later.'
        
        self.conv_id = chat['conversationId'] if chat else None
        summary = CitationNormalizer(responses, docs).normalize_citations(summary)        
        return summary

    def submit_query_streaming(self, query_str: str):

        endpoint = f"https://api.vectara.io/v1/stream-query"
        body = self.get_body(query_str)

        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers(), stream=True) 
        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            return "Sorry, something went wrong in my brain. Please try again later."

        chunks = []
        accumulated_text = ""  # Initialize text accumulation
        pattern_max_length = 50  # Example heuristic
        for line in response.iter_lines():
            if line:  # filter out keep-alive new lines
                data = json.loads(line.decode('utf-8'))
                res = data['result']
                response_set = res['responseSet']                
                if response_set is None:
                    # grab next chunk and yield it as output
                    summary = res.get('summary', None)
                    if summary is None or len(summary)==0:
                        continue
                    else:
                        chat = summary.get('chat', None)
                        if chat and chat.get('status', None):
                            st_code = chat['status']
                            print(f"Chat query failed with code {st_code}")
                            if st_code == 'RESOURCE_EXHAUSTED':
                                self.conv_id = None
                                return 'Sorry, Vectara chat turns exceeds plan limit.'
                            return 'Sorry, something went wrong in my brain. Please try again later.'
                        conv_id = chat.get('conversationId', None) if chat else None
                        if conv_id:
                            self.conv_id = conv_id
                        
                    chunk = summary['text']
                    accumulated_text += chunk  # Append current chunk to accumulation
                    if len(accumulated_text) > pattern_max_length:
                        accumulated_text = re.sub(r"\[\d+\]", "", accumulated_text)
                        accumulated_text = re.sub(r"\s+\.", ".", accumulated_text)
                        out_chunk = accumulated_text[:-pattern_max_length]
                        chunks.append(out_chunk)
                        yield out_chunk
                        accumulated_text = accumulated_text[-pattern_max_length:]

                    if summary['done']:
                        break

        # yield the last piece
        if len(accumulated_text) > 0:
            accumulated_text = re.sub(r" \[\d+\]\.", ".", accumulated_text)
            chunks.append(accumulated_text)
            yield accumulated_text        
        
        return ''.join(chunks)