File size: 16,552 Bytes
9e08039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
from fastai.core import *
from fastai.vision import *
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from .filters import IFilter, MasterFilter, ColorizerFilter
from .generators import gen_inference_deep, gen_inference_wide
# from tensorboardX import SummaryWriter
from scipy import misc
from PIL import Image
# import ffmpeg
# import youtube_dl
import gc
import requests
from io import BytesIO
import base64
# from IPython import display as ipythondisplay
# from IPython.display import HTML
# from IPython.display import Image as ipythonimage
import cv2


# # adapted from https://www.pyimagesearch.com/2016/04/25/watermarking-images-with-opencv-and-python/
# def get_watermarked(pil_image: Image) -> Image:
#     try:
#         image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
#         (h, w) = image.shape[:2]
#         image = np.dstack([image, np.ones((h, w), dtype="uint8") * 255])
#         pct = 0.05
#         full_watermark = cv2.imread(
#             './resource_images/watermark.png', cv2.IMREAD_UNCHANGED
#         )
#         (fwH, fwW) = full_watermark.shape[:2]
#         wH = int(pct * h)
#         wW = int((pct * h / fwH) * fwW)
#         watermark = cv2.resize(full_watermark, (wH, wW), interpolation=cv2.INTER_AREA)
#         overlay = np.zeros((h, w, 4), dtype="uint8")
#         (wH, wW) = watermark.shape[:2]
#         overlay[h - wH - 10 : h - 10, 10 : 10 + wW] = watermark
#         # blend the two images together using transparent overlays
#         output = image.copy()
#         cv2.addWeighted(overlay, 0.5, output, 1.0, 0, output)
#         rgb_image = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
#         final_image = Image.fromarray(rgb_image)
#         return final_image
#     except:
#         # Don't want this to crash everything, so let's just not watermark the image for now.
#         return pil_image


class ModelImageVisualizer:
    def __init__(self, filter: IFilter, results_dir: str = None):
        self.filter = filter
        self.results_dir = None if results_dir is None else Path(results_dir)
        self.results_dir.mkdir(parents=True, exist_ok=True)

    def _clean_mem(self):
        torch.cuda.empty_cache()
        # gc.collect()

    def _open_pil_image(self, path: Path) -> Image:
        return PIL.Image.open(path).convert('RGB')

    def _get_image_from_url(self, url: str) -> Image:
        response = requests.get(url, timeout=30, headers={'Accept': '*/*;q=0.8'})
        img = PIL.Image.open(BytesIO(response.content)).convert('RGB')
        return img

    def plot_transformed_image_from_url(
        self,
        url: str,
        path: str = 'test_images/image.png',
        results_dir:Path = None,
        figsize: (int, int) = (20, 20),
        render_factor: int = None,
        
        display_render_factor: bool = False,
        compare: bool = False,
        post_process: bool = True,
        watermarked: bool = True,
    ) -> Path:
        img = self._get_image_from_url(url)
        img.save(path)
        return self.plot_transformed_image(
            path=path,
            results_dir=results_dir,
            figsize=figsize,
            render_factor=render_factor,
            display_render_factor=display_render_factor,
            compare=compare,
            post_process = post_process,
            watermarked=watermarked,
        )

    def plot_transformed_image(
        self,
        path: str,
        results_dir:Path = None,
        figsize: (int, int) = (20, 20),
        render_factor: int = None,
        display_render_factor: bool = False,
        compare: bool = False,
        post_process: bool = True,
        watermarked: bool = True,
    ) -> Path:
        path = Path(path)
        if results_dir is None:
            results_dir = Path(self.results_dir)
        result = self.get_transformed_image(
            path, render_factor, post_process=post_process,watermarked=watermarked
        )
        orig = self._open_pil_image(path)
        if compare:
            self._plot_comparison(
                figsize, render_factor, display_render_factor, orig, result
            )
        else:
            self._plot_solo(figsize, render_factor, display_render_factor, result)

        orig.close()
        result_path = self._save_result_image(path, result, results_dir=results_dir)
        result.close()
        return result_path

    def plot_transformed_pil_image(
        self,
        input_image: Image,
        figsize: (int, int) = (20, 20),
        render_factor: int = None,
        display_render_factor: bool = False,
        compare: bool = False,
        post_process: bool = True,
    ) -> Image:

        result = self.get_transformed_pil_image(
            input_image, render_factor, post_process=post_process
        )

        if compare:
            self._plot_comparison(
                figsize, render_factor, display_render_factor, input_image, result
            )
        else:
            self._plot_solo(figsize, render_factor, display_render_factor, result)

        return result

    def _plot_comparison(
        self,
        figsize: (int, int),
        render_factor: int,
        display_render_factor: bool,
        orig: Image,
        result: Image,
    ):
        fig, axes = plt.subplots(1, 2, figsize=figsize)
        self._plot_image(
            orig,
            axes=axes[0],
            figsize=figsize,
            render_factor=render_factor,
            display_render_factor=False,
        )
        self._plot_image(
            result,
            axes=axes[1],
            figsize=figsize,
            render_factor=render_factor,
            display_render_factor=display_render_factor,
        )

    def _plot_solo(
        self,
        figsize: (int, int),
        render_factor: int,
        display_render_factor: bool,
        result: Image,
    ):
        fig, axes = plt.subplots(1, 1, figsize=figsize)
        self._plot_image(
            result,
            axes=axes,
            figsize=figsize,
            render_factor=render_factor,
            display_render_factor=display_render_factor,
        )

    def _save_result_image(self, source_path: Path, image: Image, results_dir = None) -> Path:
        if results_dir is None:
            results_dir = Path(self.results_dir)
        result_path = results_dir / source_path.name
        image.save(result_path)
        return result_path

    def get_transformed_image(
        self, path: Path, render_factor: int = None, post_process: bool = True,
        watermarked: bool = True,
    ) -> Image:
        self._clean_mem()
        orig_image = self._open_pil_image(path)
        filtered_image = self.filter.filter(
            orig_image, orig_image, render_factor=render_factor,post_process=post_process
        )

        # if watermarked:
        #     return get_watermarked(filtered_image)

        return filtered_image

    def get_transformed_pil_image(
        self, input_image: Image, render_factor: int = None, post_process: bool = True,
    ) -> Image:
        self._clean_mem()
        filtered_image = self.filter.filter(
            input_image, input_image, render_factor=render_factor,post_process=post_process
        )

        return filtered_image

    def _plot_image(
        self,
        image: Image,
        render_factor: int,
        axes: Axes = None,
        figsize=(20, 20),
        display_render_factor = False,
    ):
        if axes is None:
            _, axes = plt.subplots(figsize=figsize)
        axes.imshow(np.asarray(image) / 255)
        axes.axis('off')
        if render_factor is not None and display_render_factor:
            plt.text(
                10,
                10,
                'render_factor: ' + str(render_factor),
                color='white',
                backgroundcolor='black',
            )

    def _get_num_rows_columns(self, num_images: int, max_columns: int) -> (int, int):
        columns = min(num_images, max_columns)
        rows = num_images // columns
        rows = rows if rows * columns == num_images else rows + 1
        return rows, columns


# class VideoColorizer:
#     def __init__(self, vis: ModelImageVisualizer):
#         self.vis = vis
#         workfolder = Path('./video')
#         self.source_folder = workfolder / "source"
#         self.bwframes_root = workfolder / "bwframes"
#         self.audio_root = workfolder / "audio"
#         self.colorframes_root = workfolder / "colorframes"
#         self.result_folder = workfolder / "result"

#     def _purge_images(self, dir):
#         for f in os.listdir(dir):
#             if re.search('.*?\.jpg', f):
#                 os.remove(os.path.join(dir, f))

#     def _get_fps(self, source_path: Path) -> str:
#         probe = ffmpeg.probe(str(source_path))
#         stream_data = next(
#             (stream for stream in probe['streams'] if stream['codec_type'] == 'video'),
#             None,
#         )
#         return stream_data['avg_frame_rate']

#     def _download_video_from_url(self, source_url, source_path: Path):
#         if source_path.exists():
#             source_path.unlink()

#         ydl_opts = {
#             'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/mp4',
#             'outtmpl': str(source_path),
#             'retries': 30,
#             'fragment-retries': 30
#         }
#         with youtube_dl.YoutubeDL(ydl_opts) as ydl:
#             ydl.download([source_url])

#     def _extract_raw_frames(self, source_path: Path):
#         bwframes_folder = self.bwframes_root / (source_path.stem)
#         bwframe_path_template = str(bwframes_folder / '%5d.jpg')
#         bwframes_folder.mkdir(parents=True, exist_ok=True)
#         self._purge_images(bwframes_folder)
#         ffmpeg.input(str(source_path)).output(
#             str(bwframe_path_template), format='image2', vcodec='mjpeg', qscale=0
#         ).run(capture_stdout=True)

#     def _colorize_raw_frames(
#         self, source_path: Path, render_factor: int = None, post_process: bool = True,
#         watermarked: bool = True,
#     ):
#         colorframes_folder = self.colorframes_root / (source_path.stem)
#         colorframes_folder.mkdir(parents=True, exist_ok=True)
#         self._purge_images(colorframes_folder)
#         bwframes_folder = self.bwframes_root / (source_path.stem)

#         for img in progress_bar(os.listdir(str(bwframes_folder))):
#             img_path = bwframes_folder / img

#             if os.path.isfile(str(img_path)):
#                 color_image = self.vis.get_transformed_image(
#                     str(img_path), render_factor=render_factor, post_process=post_process,watermarked=watermarked
#                 )
#                 color_image.save(str(colorframes_folder / img))

#     def _build_video(self, source_path: Path) -> Path:
#         colorized_path = self.result_folder / (
#             source_path.name.replace('.mp4', '_no_audio.mp4')
#         )
#         colorframes_folder = self.colorframes_root / (source_path.stem)
#         colorframes_path_template = str(colorframes_folder / '%5d.jpg')
#         colorized_path.parent.mkdir(parents=True, exist_ok=True)
#         if colorized_path.exists():
#             colorized_path.unlink()
#         fps = self._get_fps(source_path)

#         ffmpeg.input(
#             str(colorframes_path_template),
#             format='image2',
#             vcodec='mjpeg',
#             framerate=fps,
#         ).output(str(colorized_path), crf=17, vcodec='libx264').run(capture_stdout=True)

#         result_path = self.result_folder / source_path.name
#         if result_path.exists():
#             result_path.unlink()
#         # making copy of non-audio version in case adding back audio doesn't apply or fails.
#         shutil.copyfile(str(colorized_path), str(result_path))

#         # adding back sound here
#         audio_file = Path(str(source_path).replace('.mp4', '.aac'))
#         if audio_file.exists():
#             audio_file.unlink()

#         os.system(
#             'ffmpeg -y -i "'
#             + str(source_path)
#             + '" -vn -acodec copy "'
#             + str(audio_file)
#             + '"'
#         )

#         if audio_file.exists:
#             os.system(
#                 'ffmpeg -y -i "'
#                 + str(colorized_path)
#                 + '" -i "'
#                 + str(audio_file)
#                 + '" -shortest -c:v copy -c:a aac -b:a 256k "'
#                 + str(result_path)
#                 + '"'
#             )
#         print('Video created here: ' + str(result_path))
#         return result_path

#     def colorize_from_url(
#         self,
#         source_url,
#         file_name: str,
#         render_factor: int = None,
#         post_process: bool = True,
#         watermarked: bool = True,

#     ) -> Path:
#         source_path = self.source_folder / file_name
#         self._download_video_from_url(source_url, source_path)
#         return self._colorize_from_path(
#             source_path, render_factor=render_factor, post_process=post_process,watermarked=watermarked
#         )

#     def colorize_from_file_name(
#         self, file_name: str, render_factor: int = None,  watermarked: bool = True, post_process: bool = True,
#     ) -> Path:
#         source_path = self.source_folder / file_name
#         return self._colorize_from_path(
#             source_path, render_factor=render_factor,  post_process=post_process,watermarked=watermarked
#         )

#     def _colorize_from_path(
#         self, source_path: Path, render_factor: int = None,  watermarked: bool = True, post_process: bool = True
#     ) -> Path:
#         if not source_path.exists():
#             raise Exception(
#                 'Video at path specfied, ' + str(source_path) + ' could not be found.'
#             )
#         self._extract_raw_frames(source_path)
#         self._colorize_raw_frames(
#             source_path, render_factor=render_factor,post_process=post_process,watermarked=watermarked
#         )
#         return self._build_video(source_path)


# def get_video_colorizer(render_factor: int = 21) -> VideoColorizer:
#     return get_stable_video_colorizer(render_factor=render_factor)


# def get_artistic_video_colorizer(
#     root_folder: Path = Path('./'),
#     weights_name: str = 'ColorizeArtistic_gen',
#     results_dir='result_images',
#     render_factor: int = 35
# ) -> VideoColorizer:
#     learn = gen_inference_deep(root_folder=root_folder, weights_name=weights_name)
#     filtr = MasterFilter([ColorizerFilter(learn=learn)], render_factor=render_factor)
#     vis = ModelImageVisualizer(filtr, results_dir=results_dir)
#     return VideoColorizer(vis)


# def get_stable_video_colorizer(
#     root_folder: Path = Path('./'),
#     weights_name: str = 'ColorizeVideo_gen',
#     results_dir='result_images',
#     render_factor: int = 21
# ) -> VideoColorizer:
#     learn = gen_inference_wide(root_folder=root_folder, weights_name=weights_name)
#     filtr = MasterFilter([ColorizerFilter(learn=learn)], render_factor=render_factor)
#     vis = ModelImageVisualizer(filtr, results_dir=results_dir)
#     return VideoColorizer(vis)


def get_image_colorizer(
    root_folder: Path = Path('./'), render_factor: int = 35, artistic: bool = True
) -> ModelImageVisualizer:
    if artistic:
        return get_artistic_image_colorizer(root_folder=root_folder, render_factor=render_factor)
    else:
        return get_stable_image_colorizer(root_folder=root_folder, render_factor=render_factor)


def get_stable_image_colorizer(
    root_folder: Path = Path('./'),
    weights_name: str = 'ColorizeStable_gen',
    results_dir='result_images',
    render_factor: int = 35
) -> ModelImageVisualizer:
    learn = gen_inference_wide(root_folder=root_folder, weights_name=weights_name)
    filtr = MasterFilter([ColorizerFilter(learn=learn)], render_factor=render_factor)
    vis = ModelImageVisualizer(filtr, results_dir=results_dir)
    return vis


def get_artistic_image_colorizer(
    root_folder: Path = Path('./'),
    weights_name: str = 'ColorizeArtistic_gen',
    results_dir='result_images',
    render_factor: int = 35
) -> ModelImageVisualizer:
    learn = gen_inference_deep(root_folder=root_folder, weights_name=weights_name)
    filtr = MasterFilter([ColorizerFilter(learn=learn)], render_factor=render_factor)
    vis = ModelImageVisualizer(filtr, results_dir=results_dir)
    return vis