Spaces:
Runtime error
Runtime error
File size: 8,647 Bytes
b31d3c9 0cb9530 b31d3c9 eec16fc 0cb9530 b31d3c9 0cb9530 b95247b 0cb9530 b31d3c9 0cb9530 b31d3c9 0cb9530 b31d3c9 eec16fc b31d3c9 eec16fc 2f2e4c6 4c9d269 b31d3c9 5695e02 b31d3c9 2f2e4c6 b31d3c9 d984001 b31d3c9 d984001 b31d3c9 0cb9530 067974b 4c9d269 067974b 0cb9530 067974b 0cb9530 067974b 0cb9530 5695e02 067974b 5695e02 7eda7b6 0cb9530 878ecf2 b95247b 0cb9530 067974b 0cb9530 8b64f9e 1250311 8b64f9e 1250311 8b64f9e 0cb9530 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
# Import general purpose libraries
import os, sys, re
import streamlit as st
import PIL
from PIL import Image
import cv2
import numpy as np
import uuid
from zipfile import ZipFile, ZIP_DEFLATED
from io import BytesIO
from stqdm import stqdm
# Import util functions from deoldify
# NOTE: This must be the first call in order to work properly!
from deoldify import device
from deoldify.device_id import DeviceId
#choices: CPU, GPU0...GPU7
device.set(device=DeviceId.CPU)
from deoldify.visualize import *
# Import util functions from app_utils
from app_utils import get_model_bin
####### INPUT PARAMS ###########
model_folder = 'models/'
max_img_size = 800
################################
@st.cache(allow_output_mutation=True, show_spinner=False)
def load_model(model_dir, option):
if option.lower() == 'artistic':
model_url = 'https://data.deepai.org/deoldify/ColorizeArtistic_gen.pth'
get_model_bin(model_url, os.path.join(model_dir, "ColorizeArtistic_gen.pth"))
colorizer = get_image_colorizer(artistic=True)
elif option.lower() == 'stable':
model_url = "https://www.dropbox.com/s/usf7uifrctqw9rl/ColorizeStable_gen.pth?dl=0"
get_model_bin(model_url, os.path.join(model_dir, "ColorizeStable_gen.pth"))
colorizer = get_image_colorizer(artistic=False)
return colorizer
def resize_img(input_img, max_size):
img = input_img.copy()
img_height, img_width = img.shape[0],img.shape[1]
if max(img_height, img_width) > max_size:
if img_height > img_width:
new_width = img_width*(max_size/img_height)
new_height = max_size
resized_img = cv2.resize(img,(int(new_width), int(new_height)))
return resized_img
elif img_height <= img_width:
new_width = img_height*(max_size/img_width)
new_height = max_size
resized_img = cv2.resize(img,(int(new_width), int(new_height)))
return resized_img
return img
def get_image_download_link(img, filename, button_text):
button_uuid = str(uuid.uuid4()).replace('-', '')
button_id = re.sub('\d+', '', button_uuid)
buffered = BytesIO()
img.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return get_button_html_code(img_str, filename, 'txt', button_id, button_text)
def get_button_html_code(data_str, filename, filetype, button_id, button_txt='Download file'):
custom_css = f"""
<style>
#{button_id} {{
background-color: rgb(255, 255, 255);
color: rgb(38, 39, 48);
padding: 0.25em 0.38em;
position: relative;
text-decoration: none;
border-radius: 4px;
border-width: 1px;
border-style: solid;
border-color: rgb(230, 234, 241);
border-image: initial;
}}
#{button_id}:hover {{
border-color: rgb(246, 51, 102);
color: rgb(246, 51, 102);
}}
#{button_id}:active {{
box-shadow: none;
background-color: rgb(246, 51, 102);
color: white;
}}
</style> """
href = custom_css + f'<a href="data:file/{filetype};base64,{data_str}" id="{button_id}" download="{filename}">{button_txt}</a>'
return href
def display_single_image(uploaded_file, img_size=800):
print('Type: ', type(uploaded_file))
st_title_message.markdown("**Processing your image, please wait** β")
img_name = uploaded_file.name
# Open the image
pil_img = PIL.Image.open(uploaded_file)
img_rgb = np.array(pil_img)
resized_img_rgb = resize_img(img_rgb, img_size)
resized_pil_img = PIL.Image.fromarray(resized_img_rgb)
# Send the image to the model
output_pil_img = colorizer.plot_transformed_pil_image(resized_pil_img, render_factor=35, compare=False)
# Plot images
st_input_img.image(resized_pil_img, 'Input image', use_column_width=True)
st_output_img.image(output_pil_img, 'Output image', use_column_width=True)
# Show download button
st_download_button.markdown(get_image_download_link(output_pil_img, img_name, 'Download Image'), unsafe_allow_html=True)
# Reset the message
st_title_message.markdown("**To begin, please upload an image** π")
def process_multiple_images(uploaded_files, img_size=800):
num_imgs = len(uploaded_files)
output_images_list = []
img_names_list = []
idx = 1
st_progress_bar.progress(0)
for idx, uploaded_file in stqdm(enumerate(uploaded_files, start=1), st_container=st_progress_bar):
st_title_message.markdown("**Processing image {}/{}. Please wait** β".format(idx,
num_imgs))
img_name = uploaded_file.name
img_type = uploaded_file.type
# Open the image
pil_img = PIL.Image.open(uploaded_file)
img_rgb = np.array(pil_img)
resized_img_rgb = resize_img(img_rgb, img_size)
resized_pil_img = PIL.Image.fromarray(resized_img_rgb)
# Send the image to the model
output_pil_img = colorizer.plot_transformed_pil_image(resized_pil_img, render_factor=35, compare=False)
output_images_list.append(output_pil_img)
img_names_list.append(img_name.split('.')[0])
percent = int((idx / num_imgs)*100)
st_progress_bar.progress(percent)
# Zip output files
zip_path = 'processed_images.zip'
zip_buf = zip_multiple_images(output_images_list, img_names_list, zip_path)
st_download_button.download_button(
label='Download ZIP file',
data=zip_buf.read(),
file_name=zip_path,
mime="application/zip"
)
# Show message
st_title_message.markdown("**Images are ready for download** πΎ")
def zip_multiple_images(pil_images_list, img_names_list, dest_path):
# Create zip file on memory
zip_buf = BytesIO()
with ZipFile(zip_buf, 'w', ZIP_DEFLATED) as zipObj:
for pil_img, img_name in zip(pil_images_list, img_names_list):
with BytesIO() as output:
# Save image in memory
pil_img.save(output, format="PNG")
# Read data
contents = output.getvalue()
# Write it to zip file
zipObj.writestr(img_name+".png", contents)
zip_buf.seek(0)
return zip_buf
###########################
###### STREAMLIT CODE #####
###########################
# General configuration
# st.set_page_config(layout="centered")
st.set_page_config(layout="wide")
st.set_option('deprecation.showfileUploaderEncoding', False)
st.markdown('''
<style>
.uploadedFile {display: none}
<style>''',
unsafe_allow_html=True)
# Main window configuration
st.title("Black and white colorizer")
st.markdown("This app puts color into your black and white pictures")
st_title_message = st.empty()
st_progress_bar = st.empty()
st_file_uploader = st.empty()
st_input_img = st.empty()
st_output_img = st.empty()
st_download_button = st.empty()
st_title_message.markdown("**Model loading, please wait** β")
# # Sidebar
st_color_option = st.sidebar.selectbox('Select colorizer mode',
('Artistic', 'Stable'))
# st.sidebar.title('Model parameters')
# det_conf_thres = st.sidebar.slider("Detector confidence threshold", 0.1, 0.9, value=0.5, step=0.1)
# det_nms_thres = st.sidebar.slider("Non-maximum supression IoU", 0.1, 0.9, value=0.4, step=0.1)
# Load models
try:
print('before loading the model')
colorizer = load_model(model_folder, st_color_option)
print('after loading the model')
except Exception as e:
colorizer = None
print('Error while loading the model. Please refresh the page')
print(e)
st_title_message.markdown("**Error while loading the model. Please refresh the page**")
if colorizer is not None:
st_title_message.markdown("**To begin, please upload an image** π")
#Choose your own image
uploaded_files = st_file_uploader.file_uploader("Upload a black and white photo",
type=['png', 'jpg', 'jpeg'],
accept_multiple_files=True)
if uploaded_files is not None:
if len(uploaded_files) == 1:
display_single_image(uploaded_files[0], max_img_size)
elif len(uploaded_files) > 1:
process_multiple_images(uploaded_files, max_img_size)
# Clear uploaded files
uploaded_files.seek(0)
|