Spaces:
Runtime error
Runtime error
File size: 9,417 Bytes
9e08039 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
from fastai.layers import *
from .layers import *
from fastai.torch_core import *
from fastai.callbacks.hooks import *
from fastai.vision import *
# The code below is meant to be merged into fastaiv1 ideally
__all__ = ['DynamicUnetDeep', 'DynamicUnetWide']
def _get_sfs_idxs(sizes: Sizes) -> List[int]:
"Get the indexes of the layers where the size of the activation changes."
feature_szs = [size[-1] for size in sizes]
sfs_idxs = list(
np.where(np.array(feature_szs[:-1]) != np.array(feature_szs[1:]))[0]
)
if feature_szs[0] != feature_szs[1]:
sfs_idxs = [0] + sfs_idxs
return sfs_idxs
class CustomPixelShuffle_ICNR(nn.Module):
"Upsample by `scale` from `ni` filters to `nf` (default `ni`), using `nn.PixelShuffle`, `icnr` init, and `weight_norm`."
def __init__(
self,
ni: int,
nf: int = None,
scale: int = 2,
blur: bool = False,
leaky: float = None,
**kwargs
):
super().__init__()
nf = ifnone(nf, ni)
self.conv = custom_conv_layer(
ni, nf * (scale ** 2), ks=1, use_activ=False, **kwargs
)
icnr(self.conv[0].weight)
self.shuf = nn.PixelShuffle(scale)
# Blurring over (h*w) kernel
# "Super-Resolution using Convolutional Neural Networks without Any Checkerboard Artifacts"
# - https://arxiv.org/abs/1806.02658
self.pad = nn.ReplicationPad2d((1, 0, 1, 0))
self.blur = nn.AvgPool2d(2, stride=1)
self.relu = relu(True, leaky=leaky)
def forward(self, x):
x = self.shuf(self.relu(self.conv(x)))
return self.blur(self.pad(x)) if self.blur else x
class UnetBlockDeep(nn.Module):
"A quasi-UNet block, using `PixelShuffle_ICNR upsampling`."
def __init__(
self,
up_in_c: int,
x_in_c: int,
hook: Hook,
final_div: bool = True,
blur: bool = False,
leaky: float = None,
self_attention: bool = False,
nf_factor: float = 1.0,
**kwargs
):
super().__init__()
self.hook = hook
self.shuf = CustomPixelShuffle_ICNR(
up_in_c, up_in_c // 2, blur=blur, leaky=leaky, **kwargs
)
self.bn = batchnorm_2d(x_in_c)
ni = up_in_c // 2 + x_in_c
nf = int((ni if final_div else ni // 2) * nf_factor)
self.conv1 = custom_conv_layer(ni, nf, leaky=leaky, **kwargs)
self.conv2 = custom_conv_layer(
nf, nf, leaky=leaky, self_attention=self_attention, **kwargs
)
self.relu = relu(leaky=leaky)
def forward(self, up_in: Tensor) -> Tensor:
s = self.hook.stored
up_out = self.shuf(up_in)
ssh = s.shape[-2:]
if ssh != up_out.shape[-2:]:
up_out = F.interpolate(up_out, s.shape[-2:], mode='nearest')
cat_x = self.relu(torch.cat([up_out, self.bn(s)], dim=1))
return self.conv2(self.conv1(cat_x))
class DynamicUnetDeep(SequentialEx):
"Create a U-Net from a given architecture."
def __init__(
self,
encoder: nn.Module,
n_classes: int,
blur: bool = False,
blur_final=True,
self_attention: bool = False,
y_range: Optional[Tuple[float, float]] = None,
last_cross: bool = True,
bottle: bool = False,
norm_type: Optional[NormType] = NormType.Batch,
nf_factor: float = 1.0,
**kwargs
):
extra_bn = norm_type == NormType.Spectral
imsize = (256, 256)
sfs_szs = model_sizes(encoder, size=imsize)
sfs_idxs = list(reversed(_get_sfs_idxs(sfs_szs)))
self.sfs = hook_outputs([encoder[i] for i in sfs_idxs], detach=False)
x = dummy_eval(encoder, imsize).detach()
ni = sfs_szs[-1][1]
middle_conv = nn.Sequential(
custom_conv_layer(
ni, ni * 2, norm_type=norm_type, extra_bn=extra_bn, **kwargs
),
custom_conv_layer(
ni * 2, ni, norm_type=norm_type, extra_bn=extra_bn, **kwargs
),
).eval()
x = middle_conv(x)
layers = [encoder, batchnorm_2d(ni), nn.ReLU(), middle_conv]
for i, idx in enumerate(sfs_idxs):
not_final = i != len(sfs_idxs) - 1
up_in_c, x_in_c = int(x.shape[1]), int(sfs_szs[idx][1])
do_blur = blur and (not_final or blur_final)
sa = self_attention and (i == len(sfs_idxs) - 3)
unet_block = UnetBlockDeep(
up_in_c,
x_in_c,
self.sfs[i],
final_div=not_final,
blur=blur,
self_attention=sa,
norm_type=norm_type,
extra_bn=extra_bn,
nf_factor=nf_factor,
**kwargs
).eval()
layers.append(unet_block)
x = unet_block(x)
ni = x.shape[1]
if imsize != sfs_szs[0][-2:]:
layers.append(PixelShuffle_ICNR(ni, **kwargs))
if last_cross:
layers.append(MergeLayer(dense=True))
ni += in_channels(encoder)
layers.append(res_block(ni, bottle=bottle, norm_type=norm_type, **kwargs))
layers += [
custom_conv_layer(ni, n_classes, ks=1, use_activ=False, norm_type=norm_type)
]
if y_range is not None:
layers.append(SigmoidRange(*y_range))
super().__init__(*layers)
def __del__(self):
if hasattr(self, "sfs"):
self.sfs.remove()
# ------------------------------------------------------
class UnetBlockWide(nn.Module):
"A quasi-UNet block, using `PixelShuffle_ICNR upsampling`."
def __init__(
self,
up_in_c: int,
x_in_c: int,
n_out: int,
hook: Hook,
final_div: bool = True,
blur: bool = False,
leaky: float = None,
self_attention: bool = False,
**kwargs
):
super().__init__()
self.hook = hook
up_out = x_out = n_out // 2
self.shuf = CustomPixelShuffle_ICNR(
up_in_c, up_out, blur=blur, leaky=leaky, **kwargs
)
self.bn = batchnorm_2d(x_in_c)
ni = up_out + x_in_c
self.conv = custom_conv_layer(
ni, x_out, leaky=leaky, self_attention=self_attention, **kwargs
)
self.relu = relu(leaky=leaky)
def forward(self, up_in: Tensor) -> Tensor:
s = self.hook.stored
up_out = self.shuf(up_in)
ssh = s.shape[-2:]
if ssh != up_out.shape[-2:]:
up_out = F.interpolate(up_out, s.shape[-2:], mode='nearest')
cat_x = self.relu(torch.cat([up_out, self.bn(s)], dim=1))
return self.conv(cat_x)
class DynamicUnetWide(SequentialEx):
"Create a U-Net from a given architecture."
def __init__(
self,
encoder: nn.Module,
n_classes: int,
blur: bool = False,
blur_final=True,
self_attention: bool = False,
y_range: Optional[Tuple[float, float]] = None,
last_cross: bool = True,
bottle: bool = False,
norm_type: Optional[NormType] = NormType.Batch,
nf_factor: int = 1,
**kwargs
):
nf = 512 * nf_factor
extra_bn = norm_type == NormType.Spectral
imsize = (256, 256)
sfs_szs = model_sizes(encoder, size=imsize)
sfs_idxs = list(reversed(_get_sfs_idxs(sfs_szs)))
self.sfs = hook_outputs([encoder[i] for i in sfs_idxs], detach=False)
x = dummy_eval(encoder, imsize).detach()
ni = sfs_szs[-1][1]
middle_conv = nn.Sequential(
custom_conv_layer(
ni, ni * 2, norm_type=norm_type, extra_bn=extra_bn, **kwargs
),
custom_conv_layer(
ni * 2, ni, norm_type=norm_type, extra_bn=extra_bn, **kwargs
),
).eval()
x = middle_conv(x)
layers = [encoder, batchnorm_2d(ni), nn.ReLU(), middle_conv]
for i, idx in enumerate(sfs_idxs):
not_final = i != len(sfs_idxs) - 1
up_in_c, x_in_c = int(x.shape[1]), int(sfs_szs[idx][1])
do_blur = blur and (not_final or blur_final)
sa = self_attention and (i == len(sfs_idxs) - 3)
n_out = nf if not_final else nf // 2
unet_block = UnetBlockWide(
up_in_c,
x_in_c,
n_out,
self.sfs[i],
final_div=not_final,
blur=blur,
self_attention=sa,
norm_type=norm_type,
extra_bn=extra_bn,
**kwargs
).eval()
layers.append(unet_block)
x = unet_block(x)
ni = x.shape[1]
if imsize != sfs_szs[0][-2:]:
layers.append(PixelShuffle_ICNR(ni, **kwargs))
if last_cross:
layers.append(MergeLayer(dense=True))
ni += in_channels(encoder)
layers.append(res_block(ni, bottle=bottle, norm_type=norm_type, **kwargs))
layers += [
custom_conv_layer(ni, n_classes, ks=1, use_activ=False, norm_type=norm_type)
]
if y_range is not None:
layers.append(SigmoidRange(*y_range))
super().__init__(*layers)
def __del__(self):
if hasattr(self, "sfs"):
self.sfs.remove()
|