Spaces:
Runtime error
Runtime error
File size: 5,685 Bytes
9e08039 93b36f2 9e08039 1046ee7 9e08039 4b8096d 9e08039 067974b 9e08039 067974b 9e08039 067974b 9e08039 b0c41bf 067974b b0c41bf 1046ee7 b0c41bf 9e08039 1046ee7 067974b 9e08039 1046ee7 067974b 9e08039 1046ee7 9e08039 1046ee7 9e08039 1046ee7 9e08039 067974b 9e08039 1046ee7 067974b 9e08039 1046ee7 067974b 9e08039 067974b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
#importing the libraries
import os, sys, re
import streamlit as st
import PIL
from PIL import Image
import cv2
import numpy as np
import uuid
# Import torch libraries
import fastai
import torch
# Import util functions from app_utils
from app_utils import download
from app_utils import generate_random_filename
from app_utils import clean_me
from app_utils import clean_all
from app_utils import create_directory
from app_utils import get_model_bin
from app_utils import convertToJPG
# Import util functions from deoldify
# NOTE: This must be the first call in order to work properly!
from deoldify import device
from deoldify.device_id import DeviceId
#choices: CPU, GPU0...GPU7
device.set(device=DeviceId.CPU)
from deoldify.visualize import *
####### INPUT PARAMS ###########
model_folder = 'models/'
max_img_size = 800
################################
@st.cache(allow_output_mutation=True)
def load_model(model_dir, option):
if option.lower() == 'artistic':
model_url = 'https://data.deepai.org/deoldify/ColorizeArtistic_gen.pth'
get_model_bin(model_url, os.path.join(model_dir, "ColorizeArtistic_gen.pth"))
colorizer = get_image_colorizer(artistic=True)
elif option.lower() == 'stable':
model_url = "https://www.dropbox.com/s/usf7uifrctqw9rl/ColorizeStable_gen.pth?dl=0"
get_model_bin(model_url, os.path.join(model_dir, "ColorizeStable_gen.pth"))
colorizer = get_image_colorizer(artistic=False)
return colorizer
def resize_img(input_img, max_size):
img = input_img.copy()
img_height, img_width = img.shape[0],img.shape[1]
if max(img_height, img_width) > max_size:
if img_height > img_width:
new_width = img_width*(max_size/img_height)
new_height = max_size
resized_img = cv2.resize(img,(int(new_width), int(new_height)))
return resized_img
elif img_height <= img_width:
new_width = img_height*(max_size/img_width)
new_height = max_size
resized_img = cv2.resize(img,(int(new_width), int(new_height)))
return resized_img
return img
def get_image_download_link(img,filename,text):
button_uuid = str(uuid.uuid4()).replace('-', '')
button_id = re.sub('\d+', '', button_uuid)
custom_css = f"""
<style>
#{button_id} {{
background-color: rgb(255, 255, 255);
color: rgb(38, 39, 48);
padding: 0.25em 0.38em;
position: relative;
text-decoration: none;
border-radius: 4px;
border-width: 1px;
border-style: solid;
border-color: rgb(230, 234, 241);
border-image: initial;
}}
#{button_id}:hover {{
border-color: rgb(246, 51, 102);
color: rgb(246, 51, 102);
}}
#{button_id}:active {{
box-shadow: none;
background-color: rgb(246, 51, 102);
color: white;
}}
</style> """
buffered = BytesIO()
img.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode()
href = custom_css + f'<a href="data:file/txt;base64,{img_str}" id="{button_id}" download="{filename}">{text}</a>'
return href
# General configuration
# st.set_page_config(layout="centered")
st.set_page_config(layout="wide")
st.set_option('deprecation.showfileUploaderEncoding', False)
st.markdown('''
<style>
.uploadedFile {display: none}
<style>''',
unsafe_allow_html=True)
# Main window configuration
st.title("Black and white colorizer")
st.markdown("This app puts color into your black and white pictures")
st_title_message = st.empty()
st_file_uploader = st.empty()
st_input_img = st.empty()
st_output_img = st.empty()
st_download_button = st.empty()
st_title_message.markdown("**Model loading, please wait** β")
# # Sidebar
st_color_option = st.sidebar.selectbox('Select colorizer mode',
('Artistic', 'Stable'))
# st.sidebar.title('Model parameters')
# det_conf_thres = st.sidebar.slider("Detector confidence threshold", 0.1, 0.9, value=0.5, step=0.1)
# det_nms_thres = st.sidebar.slider("Non-maximum supression IoU", 0.1, 0.9, value=0.4, step=0.1)
# Load models
try:
colorizer = load_model(model_folder, st_color_option)
except:
colorizer = None
print('Error while loading the model. Please refresh the page')
if colorizer is not None:
st_title_message.markdown("**To begin, please upload an image** π")
#Choose your own image
uploaded_file = st_file_uploader.file_uploader("Upload a black and white photo", type=['png', 'jpg', 'jpeg'])
if uploaded_file is not None:
img_name = uploaded_file.name
pil_img = PIL.Image.open(uploaded_file)
img_rgb = np.array(pil_img)
resized_img_rgb = resize_img(img_rgb, max_img_size)
resized_pil_img = PIL.Image.fromarray(resized_img_rgb)
st_title_message.markdown("**Processing your image, please wait** β")
output_pil_img = colorizer.plot_transformed_pil_image(resized_pil_img, render_factor=35, compare=False)
st_title_message.markdown("**To begin, please upload an image** π")
# Plot images
st_input_img.image(resized_pil_img, 'Input image', use_column_width=True)
st_output_img.image(output_pil_img, 'Output image', use_column_width=True)
st_download_button.markdown(get_image_download_link(output_pil_img, img_name, 'Download Image'), unsafe_allow_html=True)
|