Spaces:
Runtime error
Runtime error
File size: 6,341 Bytes
1417ec9 b5ac463 1417ec9 b5ac463 1417ec9 7810f1c 1417ec9 b5ac463 1417ec9 7810f1c 1417ec9 07a092c 1417ec9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import os, sys
import tempfile
import gradio as gr
import numpy as np
from typing import Tuple, List
# Setup and installation
os.system("git clone https://github.com/neonbjb/tortoise-tts.git")
sys.path.append("./tortoise-tts/")
os.system("pip install -r ./tortoise-tts/requirements.txt")
os.system("python ./tortoise-tts/setup.py install")
import torch
import torchaudio
import torch.nn as nn
import torch.nn.functional as F
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_audio, load_voice
# Download and instantiate model
tts = TextToSpeech()
# Display parameters
VOICES = [
"random",
"train_atkins",
"train_daws",
"train_dotrice",
"train_dreams",
"train_empire",
"train_grace",
"train_kennard",
"train_lescault",
"train_mouse",
"angie",
"applejack",
"daniel",
"deniro",
"emma",
"freeman",
"geralt",
"halle",
"jlaw",
"lj",
"mol",
"myself",
"pat",
"pat2",
"rainbow",
"snakes",
"tim_reynolds",
"tom",
"weaver",
"william",
]
DEFAULT_VOICE = "random"
PRESETS = ["ultra_fast", "fast", "standard", "high_quality"]
DEFAULT_PRESET = "fast"
DEFAULT_TEXT = "Hello, world!"
README = """# TorToiSe
Tortoise is a text-to-speech model developed by James Betker. It is capable of zero-shot voice cloning from a small set of voice samples. GitHub repo: [neonbjb/tortoise-tts](https://github.com/neonbjb/tortoise-tts).
## Usage
1. Select a model preset and type the text to speak.
2. Load a voice - either by choosing a preset, uploading audio files, or recording via microphone. Select the option to split audio into chunks if the clips are much longer than 10 seconds each. Follow the guidelines in the [voice customization guide](https://github.com/neonbjb/tortoise-tts#voice-customization-guide).
3. Click **Generate**, and wait - it's called *tortoise* for a reason!
"""
TORTOISE_SR_IN = 22050
TORTOISE_SR_OUT = 24000
def chunk_audio(
t: torch.Tensor, sample_rate: int, chunk_duration_sec: int
) -> List[torch.Tensor]:
duration = t.shape[1] / sample_rate
num_chunks = 1 + int(duration / chunk_duration_sec)
chunks = [
t[
:,
(sample_rate * chunk_duration_sec * i) : (
sample_rate * chunk_duration_sec * (i + 1)
),
]
for i in range(num_chunks)
]
# remove 0-width chunks
chunks = [chunk for chunk in chunks if chunk.shape[1] > 0]
return chunks
def tts_main(voice_samples: List[torch.Tensor], text: str, model_preset: str) -> str:
gen = tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=None,
preset=model_preset,
)
torchaudio.save("generated.wav", gen.squeeze(0).cpu(), TORTOISE_SR_OUT)
return "generated.wav"
def tts_from_preset(voice: str, text, model_preset):
voice_samples, _ = load_voice(voice)
return tts_main(voice_samples, text, model_preset)
def tts_from_files(
files: List[tempfile._TemporaryFileWrapper], do_chunk, text, model_preset
):
voice_samples = [load_audio(f.name, TORTOISE_SR_IN) for f in files]
if do_chunk:
voice_samples = [
chunk for t in voice_samples for chunk in chunk_audio(t, TORTOISE_SR_IN, 10)
]
return tts_main(voice_samples, text, model_preset)
def tts_from_recording(recording: Tuple[int, np.ndarray], do_chunk, text, model_preset):
sample_rate, audio = recording
# normalize- https://github.com/neonbjb/tortoise-tts/blob/main/tortoise/utils/audio.py#L16
norm_fix = 1
if audio.dtype == np.int32:
norm_fix = 2**31
elif audio.dtype == np.int16:
norm_fix = 2**15
audio = torch.FloatTensor(audio.T) / norm_fix
if len(audio.shape) > 1:
# convert to mono
audio = torch.mean(audio, axis=0).unsqueeze(0)
audio = torchaudio.transforms.Resample(sample_rate, TORTOISE_SR_IN)(audio)
if do_chunk:
voice_samples = chunk_audio(audio, TORTOISE_SR_IN, 10)
else:
voice_samples = [audio]
return tts_main(voice_samples, text, model_preset)
def tts_from_url(audio_url, start_time, end_time, do_chunk, text, model_preset):
os.system(
f"yt-dlp -x --audio-format mp3 --force-overwrites {audio_url} -o audio.mp3"
)
audio = load_audio("audio.mp3", TORTOISE_SR_IN)
audio = audio[:, start_time * TORTOISE_SR_IN : end_time * TORTOISE_SR_IN]
if do_chunk:
voice_samples = chunk_audio(audio, TORTOISE_SR_IN, 10)
else:
voice_samples = [audio]
return tts_main(voice_samples, text, model_preset)
with gr.Blocks() as demo:
gr.Markdown(README)
preset = gr.Dropdown(PRESETS, label="Model preset", value=DEFAULT_PRESET)
text = gr.Textbox(label="Text to speak", value=DEFAULT_TEXT)
do_chunk_label = "Split audio into chunks? (for audio much longer than 10 seconds.)"
do_chunk_default = True
with gr.Tab("Choose preset voice"):
inp1 = gr.Dropdown(VOICES, value=DEFAULT_VOICE, label="Preset voice")
btn1 = gr.Button("Generate")
with gr.Tab("Upload audio"):
inp2 = gr.File(file_count="multiple")
do_chunk2 = gr.Checkbox(label=do_chunk_label, value=do_chunk_default)
btn2 = gr.Button("Generate")
with gr.Tab("Record audio"):
inp3 = gr.Audio(source="microphone")
do_chunk3 = gr.Checkbox(label=do_chunk_label, value=do_chunk_default)
btn3 = gr.Button("Generate")
# with gr.Tab("From YouTube"):
# inp4 = gr.Textbox(label="URL")
# do_chunk4 = gr.Checkbox(label=do_chunk_label, value=do_chunk_default)
# start_time = gr.Number(label="Start time (seconds)", precision=0)
# end_time = gr.Number(label="End time (seconds)", precision=0)
# btn4 = gr.Button("Generate")
audio_out = gr.Audio()
btn1.click(
tts_from_preset,
[inp1, text, preset],
[audio_out],
)
btn2.click(
tts_from_files,
[inp2, do_chunk2, text, preset],
[audio_out],
)
btn3.click(
tts_from_recording,
[inp3, do_chunk3, text, preset],
[audio_out],
)
# btn4.click(
# tts_from_url,
# [inp4, start_time, end_time, do_chunk4, text, preset],
# [audio_out],
# )
demo.launch()
|