File size: 6,341 Bytes
1417ec9
 
b5ac463
1417ec9
 
b5ac463
1417ec9
 
 
 
 
7810f1c
1417ec9
 
 
 
b5ac463
1417ec9
 
7810f1c
1417ec9
 
07a092c
1417ec9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os, sys
import tempfile
import gradio as gr
import numpy as np
from typing import Tuple, List

# Setup and installation
os.system("git clone https://github.com/neonbjb/tortoise-tts.git")
sys.path.append("./tortoise-tts/")
os.system("pip install -r ./tortoise-tts/requirements.txt")
os.system("python ./tortoise-tts/setup.py install")

import torch
import torchaudio
import torch.nn as nn
import torch.nn.functional as F

from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_audio, load_voice

# Download and instantiate model
tts = TextToSpeech()

# Display parameters
VOICES = [
    "random",
    "train_atkins",
    "train_daws",
    "train_dotrice",
    "train_dreams",
    "train_empire",
    "train_grace",
    "train_kennard",
    "train_lescault",
    "train_mouse",
    "angie",
    "applejack",
    "daniel",
    "deniro",
    "emma",
    "freeman",
    "geralt",
    "halle",
    "jlaw",
    "lj",
    "mol",
    "myself",
    "pat",
    "pat2",
    "rainbow",
    "snakes",
    "tim_reynolds",
    "tom",
    "weaver",
    "william",
]
DEFAULT_VOICE = "random"
PRESETS = ["ultra_fast", "fast", "standard", "high_quality"]
DEFAULT_PRESET = "fast"
DEFAULT_TEXT = "Hello, world!"

README = """# TorToiSe
Tortoise is a text-to-speech model developed by James Betker. It is capable of zero-shot voice cloning from a small set of voice samples. GitHub repo: [neonbjb/tortoise-tts](https://github.com/neonbjb/tortoise-tts).
## Usage
1. Select a model preset and type the text to speak.
2. Load a voice - either by choosing a preset, uploading audio files, or recording via microphone. Select the option to split audio into chunks if the clips are much longer than 10 seconds each. Follow the guidelines in the [voice customization guide](https://github.com/neonbjb/tortoise-tts#voice-customization-guide).
3. Click **Generate**, and wait - it's called *tortoise* for a reason!
"""

TORTOISE_SR_IN = 22050
TORTOISE_SR_OUT = 24000


def chunk_audio(
    t: torch.Tensor, sample_rate: int, chunk_duration_sec: int
) -> List[torch.Tensor]:
    duration = t.shape[1] / sample_rate
    num_chunks = 1 + int(duration / chunk_duration_sec)
    chunks = [
        t[
            :,
            (sample_rate * chunk_duration_sec * i) : (
                sample_rate * chunk_duration_sec * (i + 1)
            ),
        ]
        for i in range(num_chunks)
    ]
    # remove 0-width chunks
    chunks = [chunk for chunk in chunks if chunk.shape[1] > 0]
    return chunks


def tts_main(voice_samples: List[torch.Tensor], text: str, model_preset: str) -> str:
    gen = tts.tts_with_preset(
        text,
        voice_samples=voice_samples,
        conditioning_latents=None,
        preset=model_preset,
    )
    torchaudio.save("generated.wav", gen.squeeze(0).cpu(), TORTOISE_SR_OUT)
    return "generated.wav"


def tts_from_preset(voice: str, text, model_preset):
    voice_samples, _ = load_voice(voice)
    return tts_main(voice_samples, text, model_preset)


def tts_from_files(
    files: List[tempfile._TemporaryFileWrapper], do_chunk, text, model_preset
):
    voice_samples = [load_audio(f.name, TORTOISE_SR_IN) for f in files]
    if do_chunk:
        voice_samples = [
            chunk for t in voice_samples for chunk in chunk_audio(t, TORTOISE_SR_IN, 10)
        ]
    return tts_main(voice_samples, text, model_preset)


def tts_from_recording(recording: Tuple[int, np.ndarray], do_chunk, text, model_preset):
    sample_rate, audio = recording
    # normalize- https://github.com/neonbjb/tortoise-tts/blob/main/tortoise/utils/audio.py#L16
    norm_fix = 1
    if audio.dtype == np.int32:
        norm_fix = 2**31
    elif audio.dtype == np.int16:
        norm_fix = 2**15
    audio = torch.FloatTensor(audio.T) / norm_fix
    if len(audio.shape) > 1:
        # convert to mono
        audio = torch.mean(audio, axis=0).unsqueeze(0)
    audio = torchaudio.transforms.Resample(sample_rate, TORTOISE_SR_IN)(audio)
    if do_chunk:
        voice_samples = chunk_audio(audio, TORTOISE_SR_IN, 10)
    else:
        voice_samples = [audio]
    return tts_main(voice_samples, text, model_preset)


def tts_from_url(audio_url, start_time, end_time, do_chunk, text, model_preset):
    os.system(
        f"yt-dlp -x --audio-format mp3 --force-overwrites {audio_url} -o audio.mp3"
    )
    audio = load_audio("audio.mp3", TORTOISE_SR_IN)
    audio = audio[:, start_time * TORTOISE_SR_IN : end_time * TORTOISE_SR_IN]
    if do_chunk:
        voice_samples = chunk_audio(audio, TORTOISE_SR_IN, 10)
    else:
        voice_samples = [audio]
    return tts_main(voice_samples, text, model_preset)


with gr.Blocks() as demo:
    gr.Markdown(README)

    preset = gr.Dropdown(PRESETS, label="Model preset", value=DEFAULT_PRESET)
    text = gr.Textbox(label="Text to speak", value=DEFAULT_TEXT)
    do_chunk_label = "Split audio into chunks? (for audio much longer than 10 seconds.)"
    do_chunk_default = True

    with gr.Tab("Choose preset voice"):
        inp1 = gr.Dropdown(VOICES, value=DEFAULT_VOICE, label="Preset voice")
        btn1 = gr.Button("Generate")

    with gr.Tab("Upload audio"):
        inp2 = gr.File(file_count="multiple")
        do_chunk2 = gr.Checkbox(label=do_chunk_label, value=do_chunk_default)
        btn2 = gr.Button("Generate")

    with gr.Tab("Record audio"):
        inp3 = gr.Audio(source="microphone")
        do_chunk3 = gr.Checkbox(label=do_chunk_label, value=do_chunk_default)
        btn3 = gr.Button("Generate")

    #    with gr.Tab("From YouTube"):
    #      inp4       = gr.Textbox(label="URL")
    #      do_chunk4  = gr.Checkbox(label=do_chunk_label, value=do_chunk_default)
    #      start_time = gr.Number(label="Start time (seconds)", precision=0)
    #      end_time   = gr.Number(label="End time (seconds)", precision=0)
    #      btn4       = gr.Button("Generate")

    audio_out = gr.Audio()

    btn1.click(
        tts_from_preset,
        [inp1, text, preset],
        [audio_out],
    )
    btn2.click(
        tts_from_files,
        [inp2, do_chunk2, text, preset],
        [audio_out],
    )
    btn3.click(
        tts_from_recording,
        [inp3, do_chunk3, text, preset],
        [audio_out],
    )
#    btn4.click(
#      tts_from_url,
#      [inp4, start_time, end_time, do_chunk4, text, preset],
#      [audio_out],
#    )

demo.launch()