File size: 5,015 Bytes
9db8db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df39cd4
9db8db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright 2020 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MeaningBERT metric. """

from contextlib import contextmanager
from typing import List, Dict

import datasets
import evaluate
from transformers import AutoModelForSequenceClassification, AutoTokenizer


@contextmanager
def filter_logging_context():
    def filter_log(record):
        return False if "This IS expected if you are initializing" in record.msg else True

    logger = datasets.utils.logging.get_logger("transformers.modeling_utils")
    logger.addFilter(filter_log)
    try:
        yield
    finally:
        logger.removeFilter(filter_log)


_CITATION = """\
@ARTICLE{10.3389/frai.2023.1223924,
AUTHOR={Beauchemin, David and Saggion, Horacio and Khoury, Richard},    
TITLE={MeaningBERT: assessing meaning preservation between sentences},      
JOURNAL={Frontiers in Artificial Intelligence},      
VOLUME={6},           
YEAR={2023},      
URL={https://www.frontiersin.org/articles/10.3389/frai.2023.1223924},       
DOI={10.3389/frai.2023.1223924},      
ISSN={2624-8212},   
}
"""

_DESCRIPTION = """\
MeaningBERT is an automatic and trainable metric for assessing meaning preservation between sentences. MeaningBERT was
proposed in our
article [MeaningBERT: assessing meaning preservation between sentences](https://www.frontiersin.org/articles/10.3389/frai.2023.1223924/full).
Its goal is to assess meaning preservation between two sentences that correlate highly with human judgments and sanity 
checks. For more details, refer to our publicly available article.

See the project's README at https://github.com/GRAAL-Research/MeaningBERT for more information.
"""

_KWARGS_DESCRIPTION = """
MeaningBERT metric for assessing meaning preservation between sentences.

Args:
    documents (list of str): Document sentences.
    simplifications (list of str): Simplification sentences (same number of element as documents).
    verbose (bool): Turn on intermediate status update.

Returns:
    score: the meaning score between two sentences in alist format respecting the order of the documents and 
    simplifications pairs.
    hashcode: Hashcode of the library.

Examples:

    >>> documents = ["hello there", "general kenobi"]
    >>> simplifications = ["hello there", "general kenobi"]
    >>> meaning_bert = evaluate.load("meaningbert")
    >>> results = meaning_bert.compute(documents=documents, simplifications=simplifications)
"""

_HASH = "21845c0cc85a2e8e16c89bb0053f489095cf64c5b19e9c3865d3e10047aba51b"


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class MeaningBERTScore(evaluate.Metric):
    def _info(self):
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            homepage="https://github.com/GRAAL-Research/MeaningBERT",
            inputs_description=_KWARGS_DESCRIPTION,
            features=[
                datasets.Features(
                    {
                        "documents": datasets.Value("string", id="sequence"),
                        "simplifications": datasets.Value("string", id="sequence"),
                    }
                )
            ],
            codebase_urls=["https://github.com/GRAAL-Research/MeaningBERT"],
            reference_urls=[
                "https://github.com/GRAAL-Research/MeaningBERT",
                "https://www.frontiersin.org/articles/10.3389/frai.2023.1223924/full",
            ],
        )

    def _compute(
            self,
            documents: List,
            simplifications: List,
            verbose: bool = False,
    ) -> Dict:
        assert len(documents) == len(
            simplifications), "The number of document is different of the number of simplifications."
        hashcode = _HASH

        # We load the MeaningBERT pretrained model
        scorer = AutoModelForSequenceClassification.from_pretrained("davebulaval/MeaningBERT")

        # We load MeaningBERT tokenizer
        tokenizer = AutoTokenizer.from_pretrained("davebulaval/MeaningBERT")

        # We tokenize the text as a pair and return Pytorch Tensors
        tokenize_text = tokenizer(documents, simplifications, truncation=True, padding=True, return_tensors="pt")

        with filter_logging_context():
            # We process the text
            scores = scorer(**tokenize_text)

        output_dict = {
            "scores": scores.logits.tolist(),
            "hashcode": hashcode,
        }
        return output_dict