File size: 141,362 Bytes
d287b55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 |
{
"cells": [
{
"cell_type": "markdown",
"id": "a51a3962-7801-4906-aeff-74fdfb805b3e",
"metadata": {
"tags": []
},
"source": [
"<div style=\"border-left: 4px solid #00A000; background-color: #F0FFF0; padding: 10px; margin: 10px 0;\">\n",
" <strong>Tip:</strong> To run the default model for this notebook, it's suggested to run on 4xL4 GPUs. You can also opt for a smaller GPU, but you must swap out the used model. If you want to run on a smaller GPU it's suggested to use the `meta-llama/Meta-Llama-3-8B-Instruct` model.\n",
"</div>"
]
},
{
"cell_type": "markdown",
"id": "d47bb232",
"metadata": {},
"source": [
"# Creating a synthetic dataset for fine-tuning a Sentence Transformer model \n",
"\n",
"In the previous notebook, we prepared a dataset that we'll use to generate our synthetic dataset. We'll now focus on generating a dataset that we can use to train or fine-tune a sentence similarity model using the Sentence Transformers library. \n",
"\n",
"As a reminder, the type of dataset format we're working towards creating has three columns: \"anchor\", \"positive\", and \"negative\". In our case, \"anchor\" is the text from the domain we want our Sentence Transformers model to work well with. The \"positive\" text is a text which should be similar in some way to the \"anchor\" text, whilst the \"negative\" should be in some way dissimilar to our original text.\n",
"\n",
"As a very simple example, if our \"anchor\" text is \"Bill 179 introduces restrictions on the use of pesticides in Canada\", a \"positive\" example might be \"a law that regulating the use of pesticides\", and a \"negative\" example might be \"a bill related to education funding\". Whilst it is possible to train a Sentence Transformer model using only positive examples, the inclusion of negative examples can help the model to learn more about the space of possible sentences and improve its performance. The [Sentence Transformers documentation](https://www.sbert.net/docs/sentence_transformer/training_overview.html) goes into more detail about this.\n",
"\n",
"## Creating positive and negative pairs using an LLM\n",
"\n",
"One of the remarkable aspects of working with large language models, especially instruction-tuned models, is the significant control and flexibility they offer in text generation. This unique capability empowers us to create a synthetic dataset for training a sentence similarity model. We can leverage our input anchor text alongside a prompt to generate the positive and negative examples for similarity, giving us full control over the dataset's composition.\n",
"\n",
"### What do we mean by similarity? \n",
"\n",
"How will the model be used in practice? Since we are fine-tuning a model and have a lot of control over the dataset, we should consider what we want similarity to look like. \n",
"\n",
"In an RAG use case, we might default to creating a prompt that's something like \"based on this text, write a user query that would be satisfied by this text\" Whilst that could make sense, for many RAG applications, the embeddings are used to give extra context to an LLM based on a user prompt. This user prompt might take the form of a query, but it's more likely to be a question rather than the query we make to a database. Depending on the use case, we might want to generate prompts that are more like the type of questions we expect the model to use."
]
},
{
"cell_type": "markdown",
"id": "6eedd4ef",
"metadata": {},
"source": [
"Let's start with our imports"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "fd71339b-7d22-4c9c-958e-f7b2f2ed2991",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import json\n",
"import random\n",
"\n",
"from datasets import concatenate_datasets, load_dataset\n",
"from huggingface_hub import DatasetCard, login\n",
"from outlines import generate, models\n",
"from pydantic import BaseModel, conlist, constr\n",
"from tqdm.auto import tqdm\n",
"from vllm import LLM, SamplingParams"
]
},
{
"cell_type": "markdown",
"id": "f47e5f95",
"metadata": {},
"source": [
"You can do this below if you haven't authenticated with the Hugging Face Hub yet."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5031cf30-3cfa-4bd9-ba9f-65bc52154f3f",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a5df2a83236b4aa094ed05b50c0f5cec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.svβ¦"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"login()"
]
},
{
"cell_type": "markdown",
"id": "c6f1d618",
"metadata": {},
"source": [
"We can now load the dataset we created in the previous step. "
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "464f5034-7e8f-4afe-8a97-3fa968782e42",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"ds = load_dataset(\"davanstrien/bill_summary_us_chunks\", split=\"train\")"
]
},
{
"cell_type": "markdown",
"id": "a62413cb",
"metadata": {},
"source": [
"You can see below we currently have a dataset consisting of an `id` and `section` column. In our case, the `section` column is the text we want to use as our anchor text."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "bfaa6b2e-73d5-4d61-905d-7ebc4f0c91fe",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"Dataset({\n",
" features: ['id', 'section'],\n",
" num_rows: 3446013\n",
"})"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds"
]
},
{
"cell_type": "markdown",
"id": "9164c7d8-4e5e-4920-9fa1-58bd822274f7",
"metadata": {},
"source": [
"We'll create a sample of chunks from our processed dataset. We'll keep this reasonably small here, but if you use this notebook with your own dataset, you may want to increase the number of examples you work with. "
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e782d4aa-2516-4fae-8b08-8bc62d3cc279",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"subset_idx = random.sample(range(len(ds)), k=1000)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e7d2a1dc-dad5-452d-bb04-b58d4690f0be",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"ds = ds.select(subset_idx)"
]
},
{
"cell_type": "markdown",
"id": "2c70a43b-162d-4493-a450-ab6bdd0c2f58",
"metadata": {
"tags": []
},
"source": [
"## Creating an LLM\n",
"\n",
"Our choice of LLM is crucial as it forms the basis for creating our negative and positive example pairs, derived from the dataset we're working with. To facilitate this, we require an LLM that can respond to formatted prompts. We've used `vLLM` to run our models (we'll delve into the reasons shortly). However, the question remains-which model should we choose? \n",
"\n",
"### Choosing an LLM for synthetic data generation?\n",
"\n",
"Since we're focusing on using an open weights LLM, we've already excluded LLMs, which we can only access via an API. However, we still need to choose an LLM. There are a few significant criteria we are considering:\n",
"\n",
"- The size of the LLM and the resources required to run the LLM\n",
"- The performance of the LLM \n",
"- The license of the LLM\n",
"\n",
"Whilst it may seem that you want to use the largest model possible to get the best possible data, this increases the cost and time involved in generating your dataset. Whilst you could immediately use an LLM to create responses for a batch of data when identifying a suitable LLM for generating syntehtic data, you often want to:\n",
"\n",
"- Test a few different LLMs\n",
"- Experiment with the best prompt \n",
"\n",
"While it's possible to reuse a standard prompt, it's often more effective to modify it. For instance, when generating synthetic data for embedding datasets, we may need to capture various types of similarity through our prompts. A generic prompt may not be as effective in this scenario. Additionally, it's beneficial to iterate quickly on different LLMs to identify the ones that perform best for a range of prompts. For this initial exploration, platforms like Hugging Chat or local LLM apps like LM Studio can be used to test various LLMS and prompts. \n",
"\n",
"When exploring prompts and generations for this task, I found the following models all worked pretty well:\n",
"\n",
"| Model | Parameter Count |\n",
"|-------|-----------------|\n",
"| [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | 8B parameters |\n",
"| [01-ai/Yi-1.5-34B-Chat](https://huggingface.co/01-ai/Yi-1.5-34B-Chat) | 34B parameters |\n",
"| [casperhansen/llama-3-70b-instruct-awq](https://huggingface.co/casperhansen/llama-3-70b-instruct-awq) | 70B parameters |\n",
"| [Qwen/Qwen2-72B-Instruct-AWQ](https://huggingface.co/Qwen/Qwen2-72B-Instruct-AWQ) | 72B parameters |\n",
"\n",
"You will see that for the Llama-3-70b and Qwen2-72b models, that AWQ quantized versions are used. This is because these models will be too large to fit into the VRAM of a 4xL4 GPU.\n",
"\n",
"For this notebook we use the Yi-1.5-34B model as a default. This model is a good balance between performance and resource requirements. "
]
},
{
"cell_type": "markdown",
"id": "c186341b",
"metadata": {},
"source": [
"We can now load the model and tokenizer. You may need to reduce the `gpu_memory_utilization` if you are using a smaller GPU or are hitting CUDA out of memory errors. You may also need to adjust this parameter if you have very long anchor texts.\n"
]
},
{
"cell_type": "markdown",
"id": "66df0cbc",
"metadata": {},
"source": [
"<div style=\"border-left: 4px solid #00A000; background-color: #F0FFF0; padding: 10px; margin: 10px 0;\">\n",
" <strong>Tip:</strong> If you are running on a single GPU update the `tensor_parallel_size` below to 1. \n",
"</div>"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "02107e5b-22e2-4bd3-85ba-aad6246ba9d9",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/user/miniconda/lib/python3.9/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
" warnings.warn(\n",
"2024-06-19 14:03:15,692\tINFO worker.py:1753 -- Started a local Ray instance.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO 06-19 14:03:16 config.py:623] Defaulting to use mp for distributed inference\n",
"INFO 06-19 14:03:16 config.py:707] Chunked prefill is enabled (EXPERIMENTAL).\n",
"INFO 06-19 14:03:16 llm_engine.py:161] Initializing an LLM engine (v0.5.0) with config: model='01-ai/Yi-1.5-34B-Chat', speculative_config=None, tokenizer='01-ai/Yi-1.5-34B-Chat', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=4096, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=4, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), seed=0, served_model_name=01-ai/Yi-1.5-34B-Chat)\n",
"\u001b[1;36m(VllmWorkerProcess pid=44273)\u001b[0;0m INFO 06-19 14:03:19 multiproc_worker_utils.py:215] Worker ready; awaiting tasks\n",
"\u001b[1;36m(VllmWorkerProcess pid=44272)\u001b[0;0m INFO 06-19 14:03:19 multiproc_worker_utils.py:215] Worker ready; awaiting tasks\n",
"\u001b[1;36m(VllmWorkerProcess pid=44274)\u001b[0;0m INFO 06-19 14:03:19 multiproc_worker_utils.py:215] Worker ready; awaiting tasks\n",
"INFO 06-19 14:03:20 utils.py:623] Found nccl from library libnccl.so.2\n",
"INFO 06-19 14:03:20 pynccl.py:65] vLLM is using nccl==2.20.5\n",
"\u001b[1;36m(VllmWorkerProcess pid=44273)\u001b[0;0m INFO 06-19 14:03:20 utils.py:623] Found nccl from library libnccl.so.2\n",
"\u001b[1;36m(VllmWorkerProcess pid=44272)\u001b[0;0m INFO 06-19 14:03:20 utils.py:623] Found nccl from library libnccl.so.2\n",
"\u001b[1;36m(VllmWorkerProcess pid=44274)\u001b[0;0m INFO 06-19 14:03:20 utils.py:623] Found nccl from library libnccl.so.2\n",
"\u001b[1;36m(VllmWorkerProcess pid=44273)\u001b[0;0m INFO 06-19 14:03:20 pynccl.py:65] vLLM is using nccl==2.20.5\n",
"\u001b[1;36m(VllmWorkerProcess pid=44272)\u001b[0;0m INFO 06-19 14:03:20 pynccl.py:65] vLLM is using nccl==2.20.5\n",
"\u001b[1;36m(VllmWorkerProcess pid=44274)\u001b[0;0m INFO 06-19 14:03:20 pynccl.py:65] vLLM is using nccl==2.20.5\n",
"WARNING 06-19 14:03:20 custom_all_reduce.py:170] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.\n",
"\u001b[1;36m(VllmWorkerProcess pid=44273)\u001b[0;0m WARNING 06-19 14:03:20 custom_all_reduce.py:170] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.\n",
"\u001b[1;36m(VllmWorkerProcess pid=44272)\u001b[0;0m \u001b[1;36m(VllmWorkerProcess pid=44274)\u001b[0;0m WARNING 06-19 14:03:20 custom_all_reduce.py:170] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.\n",
"WARNING 06-19 14:03:20 custom_all_reduce.py:170] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"/home/user/miniconda/lib/python3.9/multiprocessing/resource_tracker.py\", line 201, in main\n",
" cache[rtype].remove(name)\n",
"KeyError: '/psm_e0bb0061'\n",
"Traceback (most recent call last):\n",
" File \"/home/user/miniconda/lib/python3.9/multiprocessing/resource_tracker.py\", line 201, in main\n",
" cache[rtype].remove(name)\n",
"KeyError: '/psm_e0bb0061'\n",
"Traceback (most recent call last):\n",
" File \"/home/user/miniconda/lib/python3.9/multiprocessing/resource_tracker.py\", line 201, in main\n",
" cache[rtype].remove(name)\n",
"KeyError: '/psm_e0bb0061'\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1;36m(VllmWorkerProcess pid=44274)\u001b[0;0m INFO 06-19 14:03:20 weight_utils.py:218] Using model weights format ['*.safetensors']\n",
"\u001b[1;36m(VllmWorkerProcess pid=44273)\u001b[0;0m INFO 06-19 14:03:20 weight_utils.py:218] Using model weights format ['*.safetensors']\n",
"INFO 06-19 14:03:20 weight_utils.py:218] Using model weights format ['*.safetensors']\n",
"\u001b[1;36m(VllmWorkerProcess pid=44272)\u001b[0;0m INFO 06-19 14:03:20 weight_utils.py:218] Using model weights format ['*.safetensors']\n",
"\u001b[1;36m(VllmWorkerProcess pid=44273)\u001b[0;0m INFO 06-19 14:03:32 model_runner.py:159] Loading model weights took 16.0451 GB\n",
"INFO 06-19 14:03:32 model_runner.py:159] Loading model weights took 16.0451 GB\n",
"\u001b[1;36m(VllmWorkerProcess pid=44272)\u001b[0;0m INFO 06-19 14:03:32 model_runner.py:159] Loading model weights took 16.0451 GB\n",
"\u001b[1;36m(VllmWorkerProcess pid=44274)\u001b[0;0m INFO 06-19 14:03:32 model_runner.py:159] Loading model weights took 16.0451 GB\n",
"INFO 06-19 14:03:33 distributed_gpu_executor.py:56] # GPU blocks: 3187, # CPU blocks: 4369\n",
"\u001b[1;36m(VllmWorkerProcess pid=44272)\u001b[0;0m INFO 06-19 14:03:42 model_runner.py:878] Capturing the model for CUDA graphs. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.\n",
"\u001b[1;36m(VllmWorkerProcess pid=44272)\u001b[0;0m INFO 06-19 14:03:42 model_runner.py:882] CUDA graphs can take additional 1~3 GiB memory per GPU. If you are running out of memory, consider decreasing `gpu_memory_utilization` or enforcing eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.\n",
"\u001b[1;36m(VllmWorkerProcess pid=44273)\u001b[0;0m INFO 06-19 14:03:42 model_runner.py:878] Capturing the model for CUDA graphs. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.\n",
"\u001b[1;36m(VllmWorkerProcess pid=44273)\u001b[0;0m INFO 06-19 14:03:42 model_runner.py:882] CUDA graphs can take additional 1~3 GiB memory per GPU. If you are running out of memory, consider decreasing `gpu_memory_utilization` or enforcing eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.\n",
"INFO 06-19 14:03:42 model_runner.py:878] Capturing the model for CUDA graphs. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.\n",
"INFO 06-19 14:03:42 model_runner.py:882] CUDA graphs can take additional 1~3 GiB memory per GPU. If you are running out of memory, consider decreasing `gpu_memory_utilization` or enforcing eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.\n",
"\u001b[1;36m(VllmWorkerProcess pid=44274)\u001b[0;0m INFO 06-19 14:03:42 model_runner.py:878] Capturing the model for CUDA graphs. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.\n",
"\u001b[1;36m(VllmWorkerProcess pid=44274)\u001b[0;0m INFO 06-19 14:03:42 model_runner.py:882] CUDA graphs can take additional 1~3 GiB memory per GPU. If you are running out of memory, consider decreasing `gpu_memory_utilization` or enforcing eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.\n",
"\u001b[1;36m(VllmWorkerProcess pid=44274)\u001b[0;0m INFO 06-19 14:04:02 model_runner.py:954] Graph capturing finished in 21 secs.\n",
"\u001b[1;36m(VllmWorkerProcess pid=44272)\u001b[0;0m INFO 06-19 14:04:02 model_runner.py:954] Graph capturing finished in 21 secs.\n",
"\u001b[1;36m(VllmWorkerProcess pid=44273)\u001b[0;0m INFO 06-19 14:04:02 model_runner.py:954] Graph capturing finished in 21 secs.\n",
"INFO 06-19 14:04:03 model_runner.py:954] Graph capturing finished in 21 secs.\n"
]
}
],
"source": [
"llm = LLM(\n",
" \"01-ai/Yi-1.5-34B-Chat\",\n",
" tensor_parallel_size=4,\n",
" tokenizer=\"01-ai/Yi-1.5-34B-Chat\",\n",
" gpu_memory_utilization=0.9,\n",
" enable_chunked_prefill=True,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "a479e701",
"metadata": {},
"source": [
"Below are some configs for other models you might want to experiment with. \n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ef4266cf-f970-4c7a-b9db-503b9f584922",
"metadata": {},
"outputs": [],
"source": [
"# llm = LLM(\n",
"# \"meta-llama/Meta-Llama-3-8B-Instruct\",\n",
"# tensor_parallel_size=4,\n",
"# tokenizer=\"meta-llama/Meta-Llama-3-8B-Instruct\",\n",
"# gpu_memory_utilization=0.9,\n",
"# enable_chunked_prefill=True,\n",
"# )"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "c8e9995a-dfbd-4493-8906-3556be75f145",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# llm = LLM(\n",
"# \"Qwen/Qwen2-72B-Instruct-AWQ\",\n",
"# quantization=\"AWQ\",\n",
"# tensor_parallel_size=4,\n",
"# tokenizer=\"Qwen/Qwen2-72B-Instruct-AWQ\",\n",
"# gpu_memory_utilization=0.8,\n",
"# enable_chunked_prefill=True,\n",
"# )"
]
},
{
"cell_type": "markdown",
"id": "27c0774b-44d6-4828-8514-65fe8d52f906",
"metadata": {
"tags": []
},
"source": [
"### Constrained Generation using Outlines\n"
]
},
{
"cell_type": "markdown",
"id": "f92b36eb-71ce-4301-a0d0-c7a47dce9cde",
"metadata": {},
"source": [
"Now we have created an LLM and loaded our dataset, we can move to the next step of creating our dataset. As a reminder we are looking to create a dataset with three columns: \"anchor\", \"positive\", and \"negative\" using the anchor text from our dataset as a starting point.\n",
"\n",
"We can do something like this as a prompt:\n",
"\n",
"\"Given the following text, write a sentence that is similar to the text. Write a sentence that is dissimilar to the text.\"\n",
"\n",
"This prompt (might!) generate a sentence that is similar to the anchor text and a sentence that is dissimilar to the anchor text. However, we may want some way to have more certainty that the LLM produces the text we want (at least in terms of format). For example if we want to generate valid JSON the first token generated should be `{`. \n",
"\n",
"Since we want to have two types of output \"good\" and \"bad\" aka positive and negative examples, we may to produce data that looks something like:\n",
"\n",
"{\"good\": \"a sentence that is similar to the text\", \"bad\": \"a sentence that is dissimilar to the text\"}\n",
"\n",
"\n",
"A strong LLM with a good prompt will probably already do this but we can also use a technique called guided generation to enforce this more strongly. This has a few advantages:\n",
"\n",
"- the outputs are what we expect i.e. valid JSON, this makes processing them in later steps easier\n",
"- we can have some additional control over other parts of the generation process\n",
"\n",
"For doing guided generation we'll use a library called [Outlines](https://github.com/outlines-dev/outlines). Outlines is a library that allows you to create constraints on the generation process.\n",
"\n",
"> Outlinesγ° is a Python library that allows you to use Large Language Model in a simple and robust way (with structured generation).\n",
"\n",
"One of the advantages of Outlines over some other libraries is that it does structured generation by directly altering the behavior of the models generation process rather than using prompting and lots of retries. The Outlines library has an integration with `vLLM` which we used to load our model."
]
},
{
"cell_type": "markdown",
"id": "bed24b92-287a-4b2d-8807-2c8e031aba4c",
"metadata": {},
"source": [
"We can start by passing the llm we just created into the Outlines `models.VLLM` class"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "4be1bb3b-e665-4d40-aa24-bf8d8acf67f4",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"model = models.VLLM(llm)"
]
},
{
"cell_type": "markdown",
"id": "3f2fff3d",
"metadata": {},
"source": [
"### Defining the constraints\n",
"\n",
"We can now define the constraints we want to use. We can do this in various ways using the Outlines library but one nice way is to use a Pydantic Class to represent the output we want. If you are not familiar with Pydantic it is a\n",
"\n",
"> fast and extensible library for validating and serializing data using Python type hints.\n",
"\n",
"In our case we want to have two fields \"good\" and \"bad\" which are strings. We could define this as a Pydantic class like this:\n",
"\n",
"\n",
"```python\n",
"\n",
"from pydantic import BaseModel\n",
"\n",
"class Example(BaseModel):\n",
" good: str\n",
" bad: str\n",
"\n",
"```\n",
"\n",
"This will ensure we get a JSON object with two fields \"good\" and \"bad\" which are strings. However, when creating data for a sentence embedding task it can be useful to have multiple generations for each anchor text. In particular for the `bad` examples we may want the LLM to produce multiple bad examples and then choose the \"hard\" negative example i.e. the one that is most similar to the anchor text. This can help the model learn more quickly and deal with more complex examples.\n",
"\n",
"We can define this as a Pydantic class like this:\n",
"\n",
"```python\n",
"\n",
"from pydantic import BaseModel\n",
"from typing import List\n",
"\n",
"class Example(BaseModel):\n",
" good: str\n",
" bad: List[str]\n",
"\n",
"```\n",
"\n",
"You can see that we now have a list of strings for the \"bad\" field. This will allow us to generate multiple negative examples for each anchor text.\n",
"\n",
"In addition to controlling the structure of the JSON we can also define some additional constrains. For this example we'll create a Pydantic Class that has:\n",
"\n",
"- a good field which is a list of 1 string\n",
"- a bad field which is a list of 3 strings\n",
"- we also specify a constraint on the minimum and maximum length of the strings\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "3b96eb01-d186-442d-a15d-bbe170438dc2",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"class AbstractDescriptions(BaseModel):\n",
" good: conlist(constr(min_length=20, max_length=200), min_length=1, max_length=1) # type: ignore\n",
" bad: conlist(constr(min_length=20, max_length=200), min_length=3, max_length=3) # type: ignore\n",
"\n",
"\n",
"schema = AbstractDescriptions.model_json_schema()"
]
},
{
"cell_type": "markdown",
"id": "da0c6430",
"metadata": {},
"source": [
"Although it can be tempting to make a Pydantic Class that has a lot of constraints, it's often better to start with a simple class and then add more constraints as needed. Whilst Outlines will help guide the model to the output you want if it's very hard for an LLM to generate the output you want you may get suboptimal results."
]
},
{
"cell_type": "markdown",
"id": "720f6891-8650-4021-b992-dc98e0307075",
"metadata": {},
"source": [
"## Creating our prompt\n",
"\n",
"Now we turn to writing a prompt that will generate the data we want. In this case we write a prompt that is focused on the specific data we are working with (US legislation). We give the LLM a few shot example to help it understand the type of response we want as well as the format. \n",
"\n",
"In addition we pass in the constraints we defined above as a JSON Schema. This is another reason you may want to limit the number of constrains you have as the JSON Schema will get larger and in turn the size of your prompts will grow a lot. "
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "7695058d-487b-4db0-97e2-3d5ef5767f45",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def format_prompt(text: str) -> str:\n",
" return f\"\"\"Write one good and three bad abstract descriptions of the following text. Output the descriptions in a JSON file with keys βgoodβ and βbadβ.\n",
"Example:\n",
"Text: Community Energy Savings Program Act of 2019\\n\\nThis bill directs the Department of Energy to establish a grant program for states and Indian tribes to provide loans to consumers and communities that want to implement cost-effective energy efficiency measures.\n",
"Good description: A legislative proposal to promote energy efficiency through financial incentives\n",
"Bad description: A federal reform relating to the process for submitting planning applications related to oil pipelines\n",
"\n",
"Note: Descriptions can vary in abstraction, detail, and focus. Both good and bad descriptions should be short (max 20 words)\n",
"\n",
"Text to describe: {text}\n",
"Return a JSON object with the keys 'good' and 'bad' using this schema: {schema}.\"\"\""
]
},
{
"cell_type": "markdown",
"id": "df05525c",
"metadata": {},
"source": [
"We not add a new column to our dataset called `prompt` which contains the prompt we want to use."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "206fbcfd-3cea-4540-8dd0-7ab0fba08254",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2d609b2a30d0402b8d162f4a4f2723f0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map: 0%| | 0/1000 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"ds = ds.map(lambda x: {\"prompt\": format_prompt(x['section'])})"
]
},
{
"cell_type": "markdown",
"id": "450376a7-ee63-4c00-84a8-f79b28376a2e",
"metadata": {},
"source": [
"We now create a `generator` object using Outlines. We pass our model and the `AbstractDescriptions` Pydantic model we created to Outlines `generate.json`. Outlines will then \"compile\" our Pydantic model into a [finite state machine](https://en.wikipedia.org/wiki/Finite-state_machine) (FSM) representation of our Schema. Outlines constrains the possible tokens that the LLM can generate at different steps during the generation."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "ba34b313-8e89-4ac5-8739-2dd17d3989d1",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Compiling FSM index for all state transitions: 100%|ββββββββββ| 4845/4845 [01:44<00:00, 46.55it/s]\n"
]
}
],
"source": [
"generator = generate.json(model, AbstractDescriptions)"
]
},
{
"cell_type": "markdown",
"id": "6bd7b877-dca2-47f8-97a2-c67fde2a34f7",
"metadata": {},
"source": [
"We now have a `generator` to which we can pass our prompts. Although we created this via Outlines, under the hood the generation is being done by `vLLM`. `vLLM` supports [offline batched inference](https://docs.vllm.ai/en/latest/getting_started/quickstart.html#offline-batched-inference). Many LLM serving engines are primarily optimized for deployment via an API where a variable number of requests will be sent to the model. In our case, we have a batch of prompts for which we want to generate responses. The vLLM `LLM` Class:\n",
"\n",
"> includes a tokenizer, a language model (possibly distributed across multiple GPUs), and GPU memory space allocated for intermediate states (aka KV cache). Given a batch of prompts and sampling parameters, this Class generates texts from the model using an intelligent batching mechanism and efficient memory management.\n",
"\n",
"While we could still work to optimize throughput further, this Class represents a good starting point for synthetic data generation. "
]
},
{
"cell_type": "markdown",
"id": "54810b5c-b7e2-43b6-ad2c-0c4bd4adb29c",
"metadata": {},
"source": [
"### Generating our dataset\n",
"\n",
"We are now ready to generate our dataset. We'll use the `generator` object to generate our data. We'll run our dataset as batches to allow us to retry generating data that fails. \n",
"\n",
"In the below `process_batch` function, we roughly do the following:\n",
"- Split our dataset into an initial batch size\n",
"- Try and generate a response for the batch\n",
"- If we have errors for the batch, we split the batch that failed into a smaller subset and retryΓ\n",
"- We go through this process with a maximum number of retries and a minimum batch size\n",
"\n",
"There are ways we could further optimize this, but this works quite well for not skipping a whole batch whilst not wasting too much compute/time retrying tiny batches to generate a bit of extra data. \n"
]
},
{
"cell_type": "markdown",
"id": "3c63a0bc",
"metadata": {},
"source": [
"We can specify some generation parameters that will be passed to vLLM when generating the data. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3a3cfec0-96f4-4a35-acc4-6b932238599e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"params = SamplingParams(n=1, max_tokens=800, best_of=2, temperature=0.7)"
]
},
{
"cell_type": "markdown",
"id": "299b08f1",
"metadata": {},
"source": [
"We can now generate our data. Feel free to adjust the `batch_size`, `max_retries`, and `min_batch_size` to suit your needs."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "b277db6b-29f6-467c-8512-2675076b1309",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9534747f9c0c4ef89eefac53b47039b3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/10 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Processed prompts: 0%| | 0/100 [00:00<?, ?it/s, Generation Speed: 0.00 toks/s]\u001b[A\n",
"Processed prompts: 1%| | 1/100 [00:39<1:05:13, 39.53s/it, Generation Speed: 1.64 toks/s]\u001b[A\n",
"Processed prompts: 2%|β | 2/100 [00:42<29:49, 18.26s/it, Generation Speed: 2.89 toks/s] \u001b[A\n",
"Processed prompts: 3%|β | 3/100 [00:43<16:39, 10.31s/it, Generation Speed: 4.41 toks/s]\u001b[A\n",
"Processed prompts: 5%|β | 5/100 [00:44<07:27, 4.71s/it, Generation Speed: 7.16 toks/s]\u001b[A\n",
"Processed prompts: 6%|β | 6/100 [00:45<05:37, 3.59s/it, Generation Speed: 8.50 toks/s]\u001b[A\n",
"Processed prompts: 8%|β | 8/100 [00:46<03:33, 2.32s/it, Generation Speed: 10.96 toks/s]\u001b[A\n",
"Processed prompts: 9%|β | 9/100 [00:47<02:58, 1.96s/it, Generation Speed: 12.26 toks/s]\u001b[A\n",
"Processed prompts: 11%|β | 11/100 [00:52<03:17, 2.22s/it, Generation Speed: 13.56 toks/s]\u001b[A\n",
"Processed prompts: 12%|ββ | 12/100 [00:55<03:23, 2.31s/it, Generation Speed: 14.28 toks/s]\u001b[A\n",
"Processed prompts: 14%|ββ | 14/100 [00:56<02:15, 1.58s/it, Generation Speed: 16.30 toks/s]\u001b[A\n",
"Processed prompts: 15%|ββ | 15/100 [00:57<02:00, 1.42s/it, Generation Speed: 17.24 toks/s]\u001b[A\n",
"Processed prompts: 17%|ββ | 17/100 [00:58<01:26, 1.04s/it, Generation Speed: 19.16 toks/s]\u001b[A\n",
"Processed prompts: 18%|ββ | 18/100 [00:59<01:21, 1.00it/s, Generation Speed: 20.39 toks/s]\u001b[A\n",
"Processed prompts: 20%|ββ | 20/100 [01:00<01:14, 1.07it/s, Generation Speed: 21.95 toks/s]\u001b[A\n",
"Processed prompts: 22%|βββ | 22/100 [01:01<00:58, 1.32it/s, Generation Speed: 24.13 toks/s]\u001b[A\n",
"Processed prompts: 23%|βββ | 23/100 [01:02<01:07, 1.13it/s, Generation Speed: 24.77 toks/s]\u001b[A\n",
"Processed prompts: 25%|βββ | 25/100 [01:04<00:58, 1.27it/s, Generation Speed: 26.28 toks/s]\u001b[A\n",
"Processed prompts: 26%|βββ | 26/100 [01:04<00:55, 1.32it/s, Generation Speed: 27.24 toks/s]\u001b[A\n",
"Processed prompts: 28%|βββ | 28/100 [01:06<00:50, 1.43it/s, Generation Speed: 29.21 toks/s]\u001b[A\n",
"Processed prompts: 29%|βββ | 29/100 [01:06<00:47, 1.49it/s, Generation Speed: 30.10 toks/s]\u001b[A\n",
"Processed prompts: 31%|βββ | 31/100 [01:07<00:36, 1.89it/s, Generation Speed: 31.88 toks/s]\u001b[A\n",
"Processed prompts: 32%|ββββ | 32/100 [01:07<00:36, 1.86it/s, Generation Speed: 32.73 toks/s]\u001b[A\n",
"Processed prompts: 34%|ββββ | 34/100 [01:08<00:29, 2.27it/s, Generation Speed: 34.54 toks/s]\u001b[A\n",
"Processed prompts: 35%|ββββ | 35/100 [01:08<00:30, 2.16it/s, Generation Speed: 35.54 toks/s]\u001b[A\n",
"Processed prompts: 38%|ββββ | 38/100 [01:10<00:35, 1.73it/s, Generation Speed: 37.09 toks/s]\u001b[A\n",
"Processed prompts: 39%|ββββ | 39/100 [01:11<00:34, 1.75it/s, Generation Speed: 37.78 toks/s]\u001b[A\n",
"Processed prompts: 40%|ββββ | 40/100 [01:12<00:33, 1.77it/s, Generation Speed: 38.72 toks/s]\u001b[A\n",
"Processed prompts: 41%|ββββ | 41/100 [01:12<00:32, 1.81it/s, Generation Speed: 39.20 toks/s]\u001b[A\n",
"Processed prompts: 43%|βββββ | 43/100 [01:13<00:24, 2.33it/s, Generation Speed: 40.66 toks/s]\u001b[A\n",
"Processed prompts: 44%|βββββ | 44/100 [01:13<00:24, 2.32it/s, Generation Speed: 41.31 toks/s]\u001b[A\n",
"Processed prompts: 46%|βββββ | 46/100 [01:13<00:18, 2.87it/s, Generation Speed: 43.16 toks/s]\u001b[A\n",
"Processed prompts: 47%|βββββ | 47/100 [01:14<00:19, 2.72it/s, Generation Speed: 44.28 toks/s]\u001b[A\n",
"Processed prompts: 48%|βββββ | 48/100 [01:14<00:19, 2.64it/s, Generation Speed: 44.97 toks/s]\u001b[A\n",
"Processed prompts: 50%|βββββ | 50/100 [01:16<00:23, 2.09it/s, Generation Speed: 45.83 toks/s]\u001b[A\n",
"Processed prompts: 51%|βββββ | 51/100 [01:16<00:22, 2.15it/s, Generation Speed: 46.61 toks/s]\u001b[A\n",
"Processed prompts: 52%|ββββββ | 52/100 [01:16<00:21, 2.22it/s, Generation Speed: 47.68 toks/s]\u001b[A\n",
"Processed prompts: 55%|ββββββ | 55/100 [01:17<00:13, 3.45it/s, Generation Speed: 50.81 toks/s]\u001b[A\n",
"Processed prompts: 57%|ββββββ | 57/100 [01:17<00:11, 3.88it/s, Generation Speed: 52.53 toks/s]\u001b[A\n",
"Processed prompts: 59%|ββββββ | 59/100 [01:18<00:09, 4.22it/s, Generation Speed: 53.90 toks/s]\u001b[A\n",
"Processed prompts: 60%|ββββββ | 60/100 [01:18<00:10, 3.78it/s, Generation Speed: 54.81 toks/s]\u001b[A\n",
"Processed prompts: 64%|βββββββ | 64/100 [01:19<00:09, 3.74it/s, Generation Speed: 57.35 toks/s]\u001b[A\n",
"Processed prompts: 65%|βββββββ | 65/100 [01:20<00:11, 3.04it/s, Generation Speed: 57.74 toks/s]\u001b[A\n",
"Processed prompts: 67%|βββββββ | 67/100 [01:20<00:09, 3.58it/s, Generation Speed: 59.30 toks/s]\u001b[A\n",
"Processed prompts: 68%|βββββββ | 68/100 [01:20<00:09, 3.47it/s, Generation Speed: 60.17 toks/s]\u001b[A\n",
"Processed prompts: 69%|βββββββ | 69/100 [01:21<00:09, 3.36it/s, Generation Speed: 60.85 toks/s]\u001b[A\n",
"Processed prompts: 70%|βββββββ | 70/100 [01:21<00:08, 3.35it/s, Generation Speed: 61.41 toks/s]\u001b[A\n",
"Processed prompts: 71%|βββββββ | 71/100 [01:22<00:10, 2.73it/s, Generation Speed: 61.80 toks/s]\u001b[A\n",
"Processed prompts: 73%|ββββββββ | 73/100 [01:22<00:07, 3.65it/s, Generation Speed: 63.56 toks/s]\u001b[A\n",
"Processed prompts: 74%|ββββββββ | 74/100 [01:22<00:07, 3.66it/s, Generation Speed: 64.14 toks/s]\u001b[A\n",
"Processed prompts: 75%|ββββββββ | 75/100 [01:23<00:08, 2.90it/s, Generation Speed: 64.67 toks/s]\u001b[A\n",
"Processed prompts: 77%|ββββββββ | 77/100 [01:24<00:09, 2.44it/s, Generation Speed: 65.80 toks/s]\u001b[A\n",
"Processed prompts: 79%|ββββββββ | 79/100 [01:24<00:06, 3.29it/s, Generation Speed: 67.29 toks/s]\u001b[A\n",
"Processed prompts: 80%|ββββββββ | 80/100 [01:24<00:05, 3.45it/s, Generation Speed: 68.21 toks/s]\u001b[A\n",
"Processed prompts: 82%|βββββββββ | 82/100 [01:25<00:04, 3.76it/s, Generation Speed: 69.75 toks/s]\u001b[A\n",
"Processed prompts: 84%|βββββββββ | 84/100 [01:25<00:03, 4.81it/s, Generation Speed: 71.36 toks/s]\u001b[A\n",
"Processed prompts: 86%|βββββββββ | 86/100 [01:25<00:02, 5.12it/s, Generation Speed: 72.79 toks/s]\u001b[A\n",
"Processed prompts: 87%|βββββββββ | 87/100 [01:25<00:02, 4.59it/s, Generation Speed: 73.24 toks/s]\u001b[A\n",
"Processed prompts: 88%|βββββββββ | 88/100 [01:26<00:02, 4.88it/s, Generation Speed: 73.89 toks/s]\u001b[A\n",
"Processed prompts: 89%|βββββββββ | 89/100 [01:26<00:02, 5.16it/s, Generation Speed: 74.57 toks/s]\u001b[A\n",
"Processed prompts: 91%|βββββββββ | 91/100 [01:26<00:01, 6.79it/s, Generation Speed: 76.28 toks/s]\u001b[A\n",
"Processed prompts: 92%|ββββββββββ| 92/100 [01:26<00:01, 6.75it/s, Generation Speed: 76.99 toks/s]\u001b[A\n",
"Processed prompts: 93%|ββββββββββ| 93/100 [01:26<00:01, 4.68it/s, Generation Speed: 77.61 toks/s]\u001b[A\n",
"Processed prompts: 94%|ββββββββββ| 94/100 [01:27<00:01, 4.55it/s, Generation Speed: 78.26 toks/s]\u001b[A\n",
"Processed prompts: 95%|ββββββββββ| 95/100 [01:27<00:00, 5.18it/s, Generation Speed: 79.00 toks/s]\u001b[A\n",
"Processed prompts: 96%|ββββββββββ| 96/100 [01:27<00:01, 3.48it/s, Generation Speed: 79.41 toks/s]\u001b[A\n",
"Processed prompts: 99%|ββββββββββ| 99/100 [01:28<00:00, 5.25it/s, Generation Speed: 81.99 toks/s]\u001b[A\n",
"Processed prompts: 100%|ββββββββββ| 100/100 [01:28<00:00, 1.13it/s, Generation Speed: 82.88 toks/s]\u001b[A\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "607fe2197abf4f91a3556c3dcae0b0cb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Flattening the indices: 0%| | 0/100 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Processed prompts: 0%| | 0/100 [00:00<?, ?it/s, Generation Speed: 0.00 toks/s]\u001b[A\n",
"Processed prompts: 1%| | 1/100 [00:34<57:02, 34.57s/it, Generation Speed: 1.42 toks/s]\u001b[A\n",
"Processed prompts: 2%|β | 2/100 [00:37<25:36, 15.68s/it, Generation Speed: 2.86 toks/s]\u001b[A\n",
"Processed prompts: 3%|β | 3/100 [00:37<14:22, 8.90s/it, Generation Speed: 4.49 toks/s]\u001b[A\n",
"Processed prompts: 4%|β | 4/100 [00:38<09:08, 5.71s/it, Generation Speed: 6.02 toks/s]\u001b[A\n",
"Processed prompts: 5%|β | 5/100 [00:42<08:06, 5.12s/it, Generation Speed: 6.97 toks/s]\u001b[A\n",
"Processed prompts: 6%|β | 6/100 [00:46<07:03, 4.50s/it, Generation Speed: 7.71 toks/s]\u001b[A\n",
"Processed prompts: 7%|β | 7/100 [00:46<05:08, 3.31s/it, Generation Speed: 9.02 toks/s]\u001b[A\n",
"Processed prompts: 8%|β | 8/100 [00:47<03:53, 2.53s/it, Generation Speed: 10.30 toks/s]\u001b[A\n",
"Processed prompts: 9%|β | 9/100 [00:49<03:28, 2.29s/it, Generation Speed: 11.48 toks/s]\u001b[A\n",
"Processed prompts: 10%|β | 10/100 [00:51<03:11, 2.12s/it, Generation Speed: 12.38 toks/s]\u001b[A\n",
"Processed prompts: 12%|ββ | 12/100 [00:54<02:49, 1.93s/it, Generation Speed: 14.02 toks/s]\u001b[A\n",
"Processed prompts: 13%|ββ | 13/100 [00:55<02:23, 1.65s/it, Generation Speed: 15.17 toks/s]\u001b[A\n",
"Processed prompts: 16%|ββ | 16/100 [00:56<01:19, 1.06it/s, Generation Speed: 18.84 toks/s]\u001b[A\n",
"Processed prompts: 18%|ββ | 18/100 [00:58<01:15, 1.09it/s, Generation Speed: 21.06 toks/s]\u001b[A\n",
"Processed prompts: 19%|ββ | 19/100 [00:58<01:13, 1.10it/s, Generation Speed: 22.02 toks/s]\u001b[A\n",
"Processed prompts: 20%|ββ | 20/100 [00:59<01:11, 1.12it/s, Generation Speed: 22.91 toks/s]\u001b[A\n",
"Processed prompts: 21%|ββ | 21/100 [01:01<01:24, 1.07s/it, Generation Speed: 23.22 toks/s]\u001b[A\n",
"Processed prompts: 22%|βββ | 22/100 [01:02<01:18, 1.01s/it, Generation Speed: 24.14 toks/s]\u001b[A\n",
"Processed prompts: 24%|βββ | 24/100 [01:03<01:02, 1.21it/s, Generation Speed: 25.91 toks/s]\u001b[A\n",
"Processed prompts: 25%|βββ | 25/100 [01:06<01:40, 1.34s/it, Generation Speed: 26.10 toks/s]\u001b[A\n",
"Processed prompts: 30%|βββ | 30/100 [01:07<00:40, 1.72it/s, Generation Speed: 31.65 toks/s]\u001b[A\n",
"Processed prompts: 32%|ββββ | 32/100 [01:07<00:34, 1.97it/s, Generation Speed: 33.68 toks/s]\u001b[A\n",
"Processed prompts: 34%|ββββ | 34/100 [01:08<00:34, 1.92it/s, Generation Speed: 34.78 toks/s]\u001b[A\n",
"Processed prompts: 35%|ββββ | 35/100 [01:09<00:34, 1.89it/s, Generation Speed: 35.62 toks/s]\u001b[A\n",
"Processed prompts: 37%|ββββ | 37/100 [01:09<00:28, 2.22it/s, Generation Speed: 37.23 toks/s]\u001b[A\n",
"Processed prompts: 38%|ββββ | 38/100 [01:10<00:28, 2.15it/s, Generation Speed: 37.79 toks/s]\u001b[A\n",
"Processed prompts: 39%|ββββ | 39/100 [01:10<00:28, 2.12it/s, Generation Speed: 38.65 toks/s]\u001b[A\n",
"Processed prompts: 41%|ββββ | 41/100 [01:11<00:28, 2.06it/s, Generation Speed: 40.00 toks/s]\u001b[A\n",
"Processed prompts: 42%|βββββ | 42/100 [01:12<00:33, 1.74it/s, Generation Speed: 40.50 toks/s]\u001b[A\n",
"Processed prompts: 43%|βββββ | 43/100 [01:13<00:30, 1.84it/s, Generation Speed: 41.24 toks/s]\u001b[A\n",
"Processed prompts: 46%|βββββ | 46/100 [01:14<00:26, 2.02it/s, Generation Speed: 43.26 toks/s]\u001b[A\n",
"Processed prompts: 48%|βββββ | 48/100 [01:15<00:21, 2.47it/s, Generation Speed: 44.97 toks/s]\u001b[A\n",
"Processed prompts: 50%|βββββ | 50/100 [01:15<00:17, 2.88it/s, Generation Speed: 46.67 toks/s]\u001b[A\n",
"Processed prompts: 51%|βββββ | 51/100 [01:15<00:17, 2.76it/s, Generation Speed: 47.47 toks/s]\u001b[A\n",
"Processed prompts: 53%|ββββββ | 53/100 [01:16<00:18, 2.53it/s, Generation Speed: 48.68 toks/s]\u001b[A\n",
"Processed prompts: 54%|ββββββ | 54/100 [01:17<00:18, 2.47it/s, Generation Speed: 49.01 toks/s]\u001b[A\n",
"Processed prompts: 55%|ββββββ | 55/100 [01:19<00:34, 1.32it/s, Generation Speed: 48.79 toks/s]\u001b[A\n",
"Processed prompts: 57%|ββββββ | 57/100 [01:19<00:23, 1.84it/s, Generation Speed: 50.69 toks/s]\u001b[A\n",
"Processed prompts: 61%|ββββββ | 61/100 [01:20<00:13, 2.79it/s, Generation Speed: 53.86 toks/s]\u001b[A\n",
"Processed prompts: 62%|βββββββ | 62/100 [01:21<00:15, 2.41it/s, Generation Speed: 54.60 toks/s]\u001b[A\n",
"Processed prompts: 65%|βββββββ | 65/100 [01:21<00:10, 3.42it/s, Generation Speed: 57.09 toks/s]\u001b[A\n",
"Processed prompts: 67%|βββββββ | 67/100 [01:22<00:09, 3.38it/s, Generation Speed: 58.41 toks/s]\u001b[A\n",
"Processed prompts: 69%|βββββββ | 69/100 [01:22<00:07, 3.94it/s, Generation Speed: 59.90 toks/s]\u001b[A\n",
"Processed prompts: 71%|βββββββ | 71/100 [01:22<00:06, 4.49it/s, Generation Speed: 61.33 toks/s]\u001b[A\n",
"Processed prompts: 72%|ββββββββ | 72/100 [01:23<00:06, 4.27it/s, Generation Speed: 61.85 toks/s]\u001b[A\n",
"Processed prompts: 73%|ββββββββ | 73/100 [01:23<00:06, 4.12it/s, Generation Speed: 62.67 toks/s]\u001b[A\n",
"Processed prompts: 75%|ββββββββ | 75/100 [01:23<00:06, 4.00it/s, Generation Speed: 64.01 toks/s]\u001b[A\n",
"Processed prompts: 77%|ββββββββ | 77/100 [01:24<00:05, 3.98it/s, Generation Speed: 65.73 toks/s]\u001b[A\n",
"Processed prompts: 80%|ββββββββ | 80/100 [01:24<00:03, 5.65it/s, Generation Speed: 68.55 toks/s]\u001b[A\n",
"Processed prompts: 82%|βββββββββ | 82/100 [01:25<00:03, 5.24it/s, Generation Speed: 69.84 toks/s]\u001b[A\n",
"Processed prompts: 83%|βββββββββ | 83/100 [01:25<00:04, 3.80it/s, Generation Speed: 70.23 toks/s]\u001b[A\n",
"Processed prompts: 85%|βββββββββ | 85/100 [01:25<00:03, 4.86it/s, Generation Speed: 71.57 toks/s]\u001b[A\n",
"Processed prompts: 87%|βββββββββ | 87/100 [01:26<00:02, 5.12it/s, Generation Speed: 72.82 toks/s]\u001b[A\n",
"Processed prompts: 88%|βββββββββ | 88/100 [01:26<00:02, 5.22it/s, Generation Speed: 73.85 toks/s]\u001b[A\n",
"Processed prompts: 89%|βββββββββ | 89/100 [01:26<00:02, 4.44it/s, Generation Speed: 74.84 toks/s]\u001b[A\n",
"Processed prompts: 90%|βββββββββ | 90/100 [01:27<00:02, 3.60it/s, Generation Speed: 75.32 toks/s]\u001b[A\n",
"Processed prompts: 91%|βββββββββ | 91/100 [01:27<00:02, 3.59it/s, Generation Speed: 75.89 toks/s]\u001b[A\n",
"Processed prompts: 92%|ββββββββββ| 92/100 [01:27<00:01, 4.09it/s, Generation Speed: 76.57 toks/s]\u001b[A\n",
"Processed prompts: 93%|ββββββββββ| 93/100 [01:28<00:02, 2.74it/s, Generation Speed: 76.82 toks/s]\u001b[A\n",
"Processed prompts: 94%|ββββββββββ| 94/100 [01:28<00:01, 3.35it/s, Generation Speed: 77.74 toks/s]\u001b[A\n",
"Processed prompts: 95%|ββββββββββ| 95/100 [01:28<00:01, 4.01it/s, Generation Speed: 78.62 toks/s]\u001b[A\n",
"Processed prompts: 96%|ββββββββββ| 96/100 [01:28<00:01, 3.73it/s, Generation Speed: 79.27 toks/s]\u001b[A\n",
"Processed prompts: 98%|ββββββββββ| 98/100 [01:29<00:00, 4.36it/s, Generation Speed: 80.90 toks/s]\u001b[A\n",
"Processed prompts: 99%|ββββββββββ| 99/100 [01:29<00:00, 4.69it/s, Generation Speed: 81.80 toks/s]\u001b[A\n",
"Processed prompts: 100%|ββββββββββ| 100/100 [01:30<00:00, 1.11it/s, Generation Speed: 81.92 toks/s]\u001b[A\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cdf5b30d647d4bf3b83bfd86ce88133e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Flattening the indices: 0%| | 0/100 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Processed prompts: 0%| | 0/100 [00:00<?, ?it/s, Generation Speed: 0.00 toks/s]\u001b[A\n",
"Processed prompts: 1%| | 1/100 [00:37<1:01:59, 37.57s/it, Generation Speed: 1.70 toks/s]\u001b[A\n",
"Processed prompts: 2%|β | 2/100 [00:40<28:28, 17.43s/it, Generation Speed: 3.06 toks/s] \u001b[A\n",
"Processed prompts: 4%|β | 4/100 [00:43<11:40, 7.30s/it, Generation Speed: 5.62 toks/s]\u001b[A\n",
"Processed prompts: 5%|β | 5/100 [00:45<08:51, 5.59s/it, Generation Speed: 6.96 toks/s]\u001b[A\n",
"Processed prompts: 6%|β | 6/100 [00:46<06:29, 4.15s/it, Generation Speed: 8.33 toks/s]\u001b[A\n",
"Processed prompts: 7%|β | 7/100 [00:47<05:15, 3.39s/it, Generation Speed: 9.61 toks/s]\u001b[A\n",
"Processed prompts: 11%|β | 11/100 [00:48<02:01, 1.37s/it, Generation Speed: 14.61 toks/s]\u001b[A\n",
"Processed prompts: 12%|ββ | 12/100 [00:50<02:04, 1.42s/it, Generation Speed: 15.61 toks/s]\u001b[A\n",
"Processed prompts: 13%|ββ | 13/100 [00:52<02:10, 1.50s/it, Generation Speed: 16.43 toks/s]\u001b[A\n",
"Processed prompts: 15%|ββ | 15/100 [00:52<01:33, 1.10s/it, Generation Speed: 18.71 toks/s]\u001b[A\n",
"Processed prompts: 16%|ββ | 16/100 [00:53<01:28, 1.05s/it, Generation Speed: 19.72 toks/s]\u001b[A\n",
"Processed prompts: 17%|ββ | 17/100 [00:55<01:40, 1.22s/it, Generation Speed: 20.55 toks/s]\u001b[A\n",
"Processed prompts: 19%|ββ | 19/100 [00:57<01:27, 1.08s/it, Generation Speed: 22.34 toks/s]\u001b[A\n",
"Processed prompts: 21%|ββ | 21/100 [00:59<01:30, 1.14s/it, Generation Speed: 23.70 toks/s]\u001b[A\n",
"Processed prompts: 22%|βββ | 22/100 [01:00<01:23, 1.07s/it, Generation Speed: 24.71 toks/s]\u001b[A\n",
"Processed prompts: 24%|βββ | 24/100 [01:01<01:02, 1.21it/s, Generation Speed: 26.56 toks/s]\u001b[A\n",
"Processed prompts: 27%|βββ | 27/100 [01:03<00:59, 1.23it/s, Generation Speed: 28.66 toks/s]\u001b[A\n",
"Processed prompts: 29%|βββ | 29/100 [01:04<00:46, 1.53it/s, Generation Speed: 30.60 toks/s]\u001b[A\n",
"Processed prompts: 30%|βββ | 30/100 [01:04<00:45, 1.55it/s, Generation Speed: 31.18 toks/s]\u001b[A\n",
"Processed prompts: 31%|βββ | 31/100 [01:06<00:51, 1.35it/s, Generation Speed: 31.72 toks/s]\u001b[A\n",
"Processed prompts: 33%|ββββ | 33/100 [01:06<00:38, 1.74it/s, Generation Speed: 33.54 toks/s]\u001b[A\n",
"Processed prompts: 35%|ββββ | 35/100 [01:07<00:30, 2.11it/s, Generation Speed: 35.11 toks/s]\u001b[A\n",
"Processed prompts: 36%|ββββ | 36/100 [01:07<00:31, 2.04it/s, Generation Speed: 35.96 toks/s]\u001b[A\n",
"Processed prompts: 39%|ββββ | 39/100 [01:08<00:21, 2.89it/s, Generation Speed: 39.08 toks/s]\u001b[A\n",
"Processed prompts: 41%|ββββ | 41/100 [01:09<00:23, 2.56it/s, Generation Speed: 40.53 toks/s]\u001b[A\n",
"Processed prompts: 42%|βββββ | 42/100 [01:10<00:28, 2.02it/s, Generation Speed: 41.16 toks/s]\u001b[A\n",
"Processed prompts: 45%|βββββ | 45/100 [01:11<00:22, 2.40it/s, Generation Speed: 43.52 toks/s]\u001b[A\n",
"Processed prompts: 46%|βββββ | 46/100 [01:11<00:22, 2.35it/s, Generation Speed: 44.19 toks/s]\u001b[A\n",
"Processed prompts: 48%|βββββ | 48/100 [01:12<00:22, 2.35it/s, Generation Speed: 45.45 toks/s]\u001b[A\n",
"Processed prompts: 50%|βββββ | 50/100 [01:14<00:27, 1.82it/s, Generation Speed: 46.21 toks/s]\u001b[A\n",
"Processed prompts: 52%|ββββββ | 52/100 [01:14<00:24, 1.97it/s, Generation Speed: 48.03 toks/s]\u001b[A\n",
"Processed prompts: 54%|ββββββ | 54/100 [01:15<00:19, 2.41it/s, Generation Speed: 49.46 toks/s]\u001b[A\n",
"Processed prompts: 55%|ββββββ | 55/100 [01:17<00:28, 1.57it/s, Generation Speed: 49.42 toks/s]\u001b[A\n",
"Processed prompts: 58%|ββββββ | 58/100 [01:17<00:17, 2.38it/s, Generation Speed: 52.09 toks/s]\u001b[A\n",
"Processed prompts: 60%|ββββββ | 60/100 [01:17<00:14, 2.84it/s, Generation Speed: 53.85 toks/s]\u001b[A\n",
"Processed prompts: 62%|βββββββ | 62/100 [01:18<00:13, 2.83it/s, Generation Speed: 54.97 toks/s]\u001b[A\n",
"Processed prompts: 64%|βββββββ | 64/100 [01:18<00:10, 3.30it/s, Generation Speed: 56.66 toks/s]\u001b[A\n",
"Processed prompts: 66%|βββββββ | 66/100 [01:19<00:09, 3.77it/s, Generation Speed: 58.55 toks/s]\u001b[A\n",
"Processed prompts: 69%|βββββββ | 69/100 [01:19<00:06, 4.90it/s, Generation Speed: 60.83 toks/s]\u001b[A\n",
"Processed prompts: 70%|βββββββ | 70/100 [01:19<00:06, 4.63it/s, Generation Speed: 61.46 toks/s]\u001b[A\n",
"Processed prompts: 71%|βββββββ | 71/100 [01:20<00:08, 3.58it/s, Generation Speed: 61.87 toks/s]\u001b[A\n",
"Processed prompts: 72%|ββββββββ | 72/100 [01:20<00:09, 2.98it/s, Generation Speed: 62.50 toks/s]\u001b[A\n",
"Processed prompts: 76%|ββββββββ | 76/100 [01:21<00:05, 4.50it/s, Generation Speed: 65.45 toks/s]\u001b[A\n",
"Processed prompts: 78%|ββββββββ | 78/100 [01:21<00:05, 4.33it/s, Generation Speed: 66.77 toks/s]\u001b[A\n",
"Processed prompts: 79%|ββββββββ | 79/100 [01:22<00:05, 3.64it/s, Generation Speed: 67.60 toks/s]\u001b[A\n",
"Processed prompts: 81%|ββββββββ | 81/100 [01:22<00:04, 4.49it/s, Generation Speed: 69.11 toks/s]\u001b[A\n",
"Processed prompts: 83%|βββββββββ | 83/100 [01:23<00:03, 4.51it/s, Generation Speed: 70.13 toks/s]\u001b[A\n",
"Processed prompts: 84%|βββββββββ | 84/100 [01:23<00:05, 3.02it/s, Generation Speed: 70.49 toks/s]\u001b[A\n",
"Processed prompts: 86%|βββββββββ | 86/100 [01:24<00:03, 4.02it/s, Generation Speed: 71.95 toks/s]\u001b[A\n",
"Processed prompts: 87%|βββββββββ | 87/100 [01:24<00:03, 3.75it/s, Generation Speed: 72.53 toks/s]\u001b[A\n",
"Processed prompts: 88%|βββββββββ | 88/100 [01:24<00:02, 4.15it/s, Generation Speed: 73.36 toks/s]\u001b[A\n",
"Processed prompts: 90%|βββββββββ | 90/100 [01:24<00:01, 5.60it/s, Generation Speed: 74.95 toks/s]\u001b[A\n",
"Processed prompts: 93%|ββββββββββ| 93/100 [01:25<00:00, 7.22it/s, Generation Speed: 77.16 toks/s]\u001b[A\n",
"Processed prompts: 94%|ββββββββββ| 94/100 [01:25<00:01, 4.46it/s, Generation Speed: 77.49 toks/s]\u001b[A\n",
"Processed prompts: 96%|ββββββββββ| 96/100 [01:25<00:00, 5.97it/s, Generation Speed: 79.17 toks/s]\u001b[A\n",
"Processed prompts: 98%|ββββββββββ| 98/100 [01:26<00:00, 5.86it/s, Generation Speed: 80.74 toks/s]\u001b[A\n",
"Processed prompts: 99%|ββββββββββ| 99/100 [01:26<00:00, 5.86it/s, Generation Speed: 81.62 toks/s]\u001b[A\n",
"Processed prompts: 100%|ββββββββββ| 100/100 [01:27<00:00, 1.14it/s, Generation Speed: 81.40 toks/s]\u001b[A\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d793af1620b642bbb444c4aec8cf05f8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Flattening the indices: 0%| | 0/100 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Processed prompts: 0%| | 0/100 [00:00<?, ?it/s, Generation Speed: 0.00 toks/s]\u001b[A\n",
"Processed prompts: 1%| | 1/100 [00:36<59:31, 36.08s/it, Generation Speed: 1.36 toks/s]\u001b[A\n",
"Processed prompts: 2%|β | 2/100 [00:36<25:01, 15.32s/it, Generation Speed: 2.90 toks/s]\u001b[A\n",
"Processed prompts: 3%|β | 3/100 [00:37<14:02, 8.69s/it, Generation Speed: 4.43 toks/s]\u001b[A\n",
"Processed prompts: 4%|β | 4/100 [00:38<08:54, 5.57s/it, Generation Speed: 6.03 toks/s]\u001b[A\n",
"Processed prompts: 5%|β | 5/100 [00:40<07:02, 4.45s/it, Generation Speed: 7.21 toks/s]\u001b[A\n",
"Processed prompts: 6%|β | 6/100 [00:43<05:52, 3.75s/it, Generation Speed: 8.41 toks/s]\u001b[A\n",
"Processed prompts: 8%|β | 8/100 [00:44<03:14, 2.11s/it, Generation Speed: 11.12 toks/s]\u001b[A\n",
"Processed prompts: 9%|β | 9/100 [00:46<03:23, 2.23s/it, Generation Speed: 11.96 toks/s]\u001b[A\n",
"Processed prompts: 11%|β | 11/100 [00:48<02:24, 1.63s/it, Generation Speed: 14.52 toks/s]\u001b[A\n",
"Processed prompts: 12%|ββ | 12/100 [00:50<02:41, 1.83s/it, Generation Speed: 15.14 toks/s]\u001b[A\n",
"Processed prompts: 13%|ββ | 13/100 [00:51<02:18, 1.59s/it, Generation Speed: 16.18 toks/s]\u001b[A\n",
"Processed prompts: 14%|ββ | 14/100 [00:52<01:58, 1.38s/it, Generation Speed: 17.29 toks/s]\u001b[A\n",
"Processed prompts: 15%|ββ | 15/100 [00:53<01:43, 1.22s/it, Generation Speed: 18.27 toks/s]\u001b[A\n",
"Processed prompts: 16%|ββ | 16/100 [00:54<01:33, 1.11s/it, Generation Speed: 19.48 toks/s]\u001b[A\n",
"Processed prompts: 18%|ββ | 18/100 [00:56<01:37, 1.19s/it, Generation Speed: 21.04 toks/s]\u001b[A\n",
"Processed prompts: 20%|ββ | 20/100 [00:57<01:11, 1.12it/s, Generation Speed: 23.13 toks/s]\u001b[A\n",
"Processed prompts: 21%|ββ | 21/100 [00:59<01:24, 1.07s/it, Generation Speed: 23.72 toks/s]\u001b[A\n",
"Processed prompts: 23%|βββ | 23/100 [01:01<01:16, 1.01it/s, Generation Speed: 25.33 toks/s]\u001b[A\n",
"Processed prompts: 24%|βββ | 24/100 [01:02<01:24, 1.11s/it, Generation Speed: 26.07 toks/s]\u001b[A\n",
"Processed prompts: 26%|βββ | 26/100 [01:03<00:59, 1.24it/s, Generation Speed: 27.88 toks/s]\u001b[A\n",
"Processed prompts: 27%|βββ | 27/100 [01:04<01:04, 1.14it/s, Generation Speed: 28.60 toks/s]\u001b[A\n",
"Processed prompts: 30%|βββ | 30/100 [01:05<00:44, 1.57it/s, Generation Speed: 31.20 toks/s]\u001b[A\n",
"Processed prompts: 33%|ββββ | 33/100 [01:06<00:30, 2.21it/s, Generation Speed: 34.05 toks/s]\u001b[A\n",
"Processed prompts: 34%|ββββ | 34/100 [01:07<00:36, 1.80it/s, Generation Speed: 34.46 toks/s]\u001b[A\n",
"Processed prompts: 35%|ββββ | 35/100 [01:08<00:43, 1.51it/s, Generation Speed: 35.18 toks/s]\u001b[A\n",
"Processed prompts: 38%|ββββ | 38/100 [01:09<00:37, 1.67it/s, Generation Speed: 37.56 toks/s]\u001b[A\n",
"Processed prompts: 40%|ββββ | 40/100 [01:10<00:34, 1.75it/s, Generation Speed: 39.11 toks/s]\u001b[A\n",
"Processed prompts: 42%|βββββ | 42/100 [01:11<00:27, 2.13it/s, Generation Speed: 40.77 toks/s]\u001b[A\n",
"Processed prompts: 43%|βββββ | 43/100 [01:11<00:26, 2.15it/s, Generation Speed: 41.34 toks/s]\u001b[A\n",
"Processed prompts: 44%|βββββ | 44/100 [01:12<00:26, 2.12it/s, Generation Speed: 42.01 toks/s]\u001b[A\n",
"Processed prompts: 45%|βββββ | 45/100 [01:13<00:32, 1.71it/s, Generation Speed: 42.43 toks/s]\u001b[A\n",
"Processed prompts: 46%|βββββ | 46/100 [01:14<00:36, 1.50it/s, Generation Speed: 43.14 toks/s]\u001b[A\n",
"Processed prompts: 47%|βββββ | 47/100 [01:14<00:32, 1.64it/s, Generation Speed: 43.91 toks/s]\u001b[A\n",
"Processed prompts: 49%|βββββ | 49/100 [01:15<00:22, 2.24it/s, Generation Speed: 45.85 toks/s]\u001b[A\n",
"Processed prompts: 51%|βββββ | 51/100 [01:15<00:17, 2.79it/s, Generation Speed: 47.62 toks/s]\u001b[A\n",
"Processed prompts: 53%|ββββββ | 53/100 [01:16<00:17, 2.69it/s, Generation Speed: 49.28 toks/s]\u001b[A\n",
"Processed prompts: 54%|ββββββ | 54/100 [01:17<00:21, 2.14it/s, Generation Speed: 49.59 toks/s]\u001b[A\n",
"Processed prompts: 55%|ββββββ | 55/100 [01:17<00:20, 2.16it/s, Generation Speed: 50.27 toks/s]\u001b[A\n",
"Processed prompts: 56%|ββββββ | 56/100 [01:17<00:20, 2.20it/s, Generation Speed: 50.88 toks/s]\u001b[A\n",
"Processed prompts: 57%|ββββββ | 57/100 [01:18<00:23, 1.82it/s, Generation Speed: 51.36 toks/s]\u001b[A\n",
"Processed prompts: 59%|ββββββ | 59/100 [01:19<00:16, 2.55it/s, Generation Speed: 52.78 toks/s]\u001b[A\n",
"Processed prompts: 60%|ββββββ | 60/100 [01:19<00:15, 2.60it/s, Generation Speed: 53.56 toks/s]\u001b[A\n",
"Processed prompts: 62%|βββββββ | 62/100 [01:19<00:11, 3.32it/s, Generation Speed: 55.04 toks/s]\u001b[A\n",
"Processed prompts: 63%|βββββββ | 63/100 [01:20<00:11, 3.21it/s, Generation Speed: 55.92 toks/s]\u001b[A\n",
"Processed prompts: 66%|βββββββ | 66/100 [01:20<00:07, 4.68it/s, Generation Speed: 57.84 toks/s]\u001b[A\n",
"Processed prompts: 67%|βββββββ | 67/100 [01:20<00:07, 4.27it/s, Generation Speed: 58.51 toks/s]\u001b[A\n",
"Processed prompts: 68%|βββββββ | 68/100 [01:21<00:08, 3.95it/s, Generation Speed: 58.99 toks/s]\u001b[A\n",
"Processed prompts: 69%|βββββββ | 69/100 [01:21<00:10, 3.04it/s, Generation Speed: 59.41 toks/s]\u001b[A\n",
"Processed prompts: 70%|βββββββ | 70/100 [01:22<00:09, 3.10it/s, Generation Speed: 60.14 toks/s]\u001b[A\n",
"Processed prompts: 71%|βββββββ | 71/100 [01:22<00:09, 3.16it/s, Generation Speed: 60.95 toks/s]\u001b[A\n",
"Processed prompts: 72%|ββββββββ | 72/100 [01:22<00:08, 3.22it/s, Generation Speed: 61.80 toks/s]\u001b[A\n",
"Processed prompts: 74%|ββββββββ | 74/100 [01:23<00:07, 3.37it/s, Generation Speed: 63.18 toks/s]\u001b[A\n",
"Processed prompts: 75%|ββββββββ | 75/100 [01:23<00:08, 2.84it/s, Generation Speed: 63.79 toks/s]\u001b[A\n",
"Processed prompts: 76%|ββββββββ | 76/100 [01:24<00:11, 2.12it/s, Generation Speed: 64.08 toks/s]\u001b[A\n",
"Processed prompts: 78%|ββββββββ | 78/100 [01:24<00:07, 3.04it/s, Generation Speed: 65.61 toks/s]\u001b[A\n",
"Processed prompts: 79%|ββββββββ | 79/100 [01:25<00:06, 3.19it/s, Generation Speed: 66.31 toks/s]\u001b[A\n",
"Processed prompts: 80%|ββββββββ | 80/100 [01:25<00:08, 2.47it/s, Generation Speed: 66.96 toks/s]\u001b[A\n",
"Processed prompts: 82%|βββββββββ | 82/100 [01:25<00:05, 3.55it/s, Generation Speed: 68.51 toks/s]\u001b[A\n",
"Processed prompts: 83%|βββββββββ | 83/100 [01:26<00:04, 3.75it/s, Generation Speed: 69.13 toks/s]\u001b[A\n",
"Processed prompts: 84%|βββββββββ | 84/100 [01:26<00:03, 4.01it/s, Generation Speed: 69.76 toks/s]\u001b[A\n",
"Processed prompts: 85%|βββββββββ | 85/100 [01:26<00:04, 3.58it/s, Generation Speed: 70.46 toks/s]\u001b[A\n",
"Processed prompts: 88%|βββββββββ | 88/100 [01:26<00:01, 6.14it/s, Generation Speed: 72.80 toks/s]\u001b[A\n",
"Processed prompts: 89%|βββββββββ | 89/100 [01:27<00:01, 6.07it/s, Generation Speed: 73.56 toks/s]\u001b[A\n",
"Processed prompts: 90%|βββββββββ | 90/100 [01:27<00:01, 6.07it/s, Generation Speed: 74.55 toks/s]\u001b[A\n",
"Processed prompts: 91%|βββββββββ | 91/100 [01:27<00:02, 4.27it/s, Generation Speed: 75.26 toks/s]\u001b[A\n",
"Processed prompts: 93%|ββββββββββ| 93/100 [01:28<00:01, 4.03it/s, Generation Speed: 76.63 toks/s]\u001b[A\n",
"Processed prompts: 94%|ββββββββββ| 94/100 [01:28<00:01, 3.70it/s, Generation Speed: 77.32 toks/s]\u001b[A\n",
"Processed prompts: 96%|ββββββββββ| 96/100 [01:28<00:00, 4.39it/s, Generation Speed: 78.95 toks/s]\u001b[A\n",
"Processed prompts: 97%|ββββββββββ| 97/100 [01:29<00:01, 2.66it/s, Generation Speed: 79.20 toks/s]\u001b[A\n",
"Processed prompts: 98%|ββββββββββ| 98/100 [01:30<00:00, 2.85it/s, Generation Speed: 79.98 toks/s]\u001b[A\n",
"Processed prompts: 99%|ββββββββββ| 99/100 [01:30<00:00, 3.06it/s, Generation Speed: 80.96 toks/s]\u001b[A\n",
"Processed prompts: 100%|ββββββββββ| 100/100 [01:31<00:00, 1.10it/s, Generation Speed: 81.48 toks/s]\u001b[A\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6e1cdb7dcf4048cb83b09cfad22ac04f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Flattening the indices: 0%| | 0/100 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Processed prompts: 0%| | 0/100 [00:00<?, ?it/s, Generation Speed: 0.00 toks/s]\u001b[A\n",
"Processed prompts: 1%| | 1/100 [00:40<1:06:31, 40.31s/it, Generation Speed: 1.49 toks/s]\u001b[A\n",
"Processed prompts: 2%|β | 2/100 [00:43<30:30, 18.67s/it, Generation Speed: 2.92 toks/s] \u001b[A\n",
"Processed prompts: 3%|β | 3/100 [00:47<18:53, 11.69s/it, Generation Speed: 4.09 toks/s]\u001b[A\n",
"Processed prompts: 4%|β | 4/100 [00:48<11:51, 7.41s/it, Generation Speed: 5.26 toks/s]\u001b[A\n",
"Processed prompts: 5%|β | 5/100 [00:48<07:59, 5.05s/it, Generation Speed: 6.62 toks/s]\u001b[A\n",
"Processed prompts: 6%|β | 6/100 [00:49<05:40, 3.62s/it, Generation Speed: 7.79 toks/s]\u001b[A\n",
"Processed prompts: 7%|β | 7/100 [00:50<04:12, 2.72s/it, Generation Speed: 9.04 toks/s]\u001b[A\n",
"Processed prompts: 8%|β | 8/100 [00:52<03:43, 2.43s/it, Generation Speed: 10.16 toks/s]\u001b[A\n",
"Processed prompts: 9%|β | 9/100 [00:54<03:22, 2.22s/it, Generation Speed: 11.36 toks/s]\u001b[A\n",
"Processed prompts: 11%|β | 11/100 [00:55<02:03, 1.39s/it, Generation Speed: 13.79 toks/s]\u001b[A\n",
"Processed prompts: 13%|ββ | 13/100 [00:56<01:27, 1.01s/it, Generation Speed: 15.83 toks/s]\u001b[A\n",
"Processed prompts: 14%|ββ | 14/100 [00:56<01:24, 1.02it/s, Generation Speed: 16.90 toks/s]\u001b[A\n",
"Processed prompts: 15%|ββ | 15/100 [00:59<01:54, 1.35s/it, Generation Speed: 17.61 toks/s]\u001b[A\n",
"Processed prompts: 17%|ββ | 17/100 [01:00<01:21, 1.02it/s, Generation Speed: 19.77 toks/s]\u001b[A\n",
"Processed prompts: 19%|ββ | 19/100 [01:02<01:15, 1.07it/s, Generation Speed: 21.56 toks/s]\u001b[A\n",
"Processed prompts: 21%|ββ | 21/100 [01:02<01:00, 1.31it/s, Generation Speed: 23.24 toks/s]\u001b[A\n",
"Processed prompts: 22%|βββ | 22/100 [01:03<00:58, 1.34it/s, Generation Speed: 24.15 toks/s]\u001b[A\n",
"Processed prompts: 23%|βββ | 23/100 [01:07<01:47, 1.40s/it, Generation Speed: 24.03 toks/s]\u001b[A\n",
"Processed prompts: 26%|βββ | 26/100 [01:07<01:00, 1.22it/s, Generation Speed: 26.78 toks/s]\u001b[A\n",
"Processed prompts: 28%|βββ | 28/100 [01:08<00:47, 1.52it/s, Generation Speed: 28.92 toks/s]\u001b[A\n",
"Processed prompts: 32%|ββββ | 32/100 [01:09<00:28, 2.41it/s, Generation Speed: 32.96 toks/s]\u001b[A\n",
"Processed prompts: 33%|ββββ | 33/100 [01:10<00:36, 1.85it/s, Generation Speed: 33.68 toks/s]\u001b[A\n",
"Processed prompts: 35%|ββββ | 35/100 [01:11<00:35, 1.82it/s, Generation Speed: 35.52 toks/s]\u001b[A\n",
"Processed prompts: 38%|ββββ | 38/100 [01:12<00:25, 2.47it/s, Generation Speed: 37.97 toks/s]\u001b[A\n",
"Processed prompts: 39%|ββββ | 39/100 [01:12<00:25, 2.39it/s, Generation Speed: 38.70 toks/s]\u001b[A\n",
"Processed prompts: 40%|ββββ | 40/100 [01:13<00:26, 2.31it/s, Generation Speed: 39.29 toks/s]\u001b[A\n",
"Processed prompts: 41%|ββββ | 41/100 [01:13<00:26, 2.26it/s, Generation Speed: 40.08 toks/s]\u001b[A\n",
"Processed prompts: 42%|βββββ | 42/100 [01:13<00:25, 2.26it/s, Generation Speed: 40.93 toks/s]\u001b[A\n",
"Processed prompts: 44%|βββββ | 44/100 [01:14<00:19, 2.85it/s, Generation Speed: 42.84 toks/s]\u001b[A\n",
"Processed prompts: 47%|βββββ | 47/100 [01:14<00:13, 3.94it/s, Generation Speed: 45.52 toks/s]\u001b[A\n",
"Processed prompts: 48%|βββββ | 48/100 [01:16<00:26, 1.96it/s, Generation Speed: 45.83 toks/s]\u001b[A\n",
"Processed prompts: 50%|βββββ | 50/100 [01:16<00:20, 2.42it/s, Generation Speed: 47.76 toks/s]\u001b[A\n",
"Processed prompts: 52%|ββββββ | 52/100 [01:17<00:16, 2.88it/s, Generation Speed: 49.17 toks/s]\u001b[A\n",
"Processed prompts: 53%|ββββββ | 53/100 [01:17<00:16, 2.77it/s, Generation Speed: 49.79 toks/s]\u001b[A\n",
"Processed prompts: 55%|ββββββ | 55/100 [01:18<00:14, 3.21it/s, Generation Speed: 51.24 toks/s]\u001b[A\n",
"Processed prompts: 56%|ββββββ | 56/100 [01:18<00:14, 2.98it/s, Generation Speed: 52.00 toks/s]\u001b[A\n",
"Processed prompts: 57%|ββββββ | 57/100 [01:19<00:14, 2.88it/s, Generation Speed: 52.53 toks/s]\u001b[A\n",
"Processed prompts: 58%|ββββββ | 58/100 [01:19<00:14, 2.87it/s, Generation Speed: 53.32 toks/s]\u001b[A\n",
"Processed prompts: 61%|ββββββ | 61/100 [01:19<00:08, 4.33it/s, Generation Speed: 55.57 toks/s]\u001b[A\n",
"Processed prompts: 62%|βββββββ | 62/100 [01:20<00:09, 3.92it/s, Generation Speed: 56.29 toks/s]\u001b[A\n",
"Processed prompts: 65%|βββββββ | 65/100 [01:21<00:10, 3.36it/s, Generation Speed: 57.91 toks/s]\u001b[A\n",
"Processed prompts: 68%|βββββββ | 68/100 [01:21<00:07, 4.44it/s, Generation Speed: 60.14 toks/s]\u001b[A\n",
"Processed prompts: 70%|βββββββ | 70/100 [01:22<00:10, 2.98it/s, Generation Speed: 61.03 toks/s]\u001b[A\n",
"Processed prompts: 71%|βββββββ | 71/100 [01:23<00:09, 3.04it/s, Generation Speed: 61.75 toks/s]\u001b[A\n",
"Processed prompts: 72%|ββββββββ | 72/100 [01:23<00:10, 2.68it/s, Generation Speed: 62.09 toks/s]\u001b[A\n",
"Processed prompts: 75%|ββββββββ | 75/100 [01:24<00:08, 3.09it/s, Generation Speed: 63.86 toks/s]\u001b[A\n",
"Processed prompts: 76%|ββββββββ | 76/100 [01:24<00:07, 3.16it/s, Generation Speed: 64.51 toks/s]\u001b[A\n",
"Processed prompts: 78%|ββββββββ | 78/100 [01:25<00:06, 3.34it/s, Generation Speed: 65.70 toks/s]\u001b[A\n",
"Processed prompts: 79%|ββββββββ | 79/100 [01:25<00:07, 2.63it/s, Generation Speed: 66.56 toks/s]\u001b[A\n",
"Processed prompts: 80%|ββββββββ | 80/100 [01:26<00:06, 2.87it/s, Generation Speed: 67.29 toks/s]\u001b[A\n",
"Processed prompts: 81%|ββββββββ | 81/100 [01:26<00:06, 2.72it/s, Generation Speed: 68.03 toks/s]\u001b[A\n",
"Processed prompts: 82%|βββββββββ | 82/100 [01:26<00:05, 3.06it/s, Generation Speed: 68.75 toks/s]\u001b[A\n",
"Processed prompts: 84%|βββββββββ | 84/100 [01:26<00:03, 4.28it/s, Generation Speed: 70.08 toks/s]\u001b[A\n",
"Processed prompts: 86%|βββββββββ | 86/100 [01:27<00:02, 4.80it/s, Generation Speed: 71.51 toks/s]\u001b[A\n",
"Processed prompts: 87%|βββββββββ | 87/100 [01:27<00:02, 5.01it/s, Generation Speed: 72.28 toks/s]\u001b[A\n",
"Processed prompts: 89%|βββββββββ | 89/100 [01:27<00:01, 6.43it/s, Generation Speed: 73.68 toks/s]\u001b[A\n",
"Processed prompts: 91%|βββββββββ | 91/100 [01:28<00:01, 4.86it/s, Generation Speed: 75.70 toks/s]\u001b[A\n",
"Processed prompts: 93%|ββββββββββ| 93/100 [01:28<00:01, 6.36it/s, Generation Speed: 77.28 toks/s]\u001b[A\n",
"Processed prompts: 95%|ββββββββββ| 95/100 [01:28<00:00, 6.97it/s, Generation Speed: 78.81 toks/s]\u001b[A\n",
"Processed prompts: 96%|ββββββββββ| 96/100 [01:28<00:00, 6.34it/s, Generation Speed: 79.92 toks/s]\u001b[A\n",
"Processed prompts: 98%|ββββββββββ| 98/100 [01:29<00:00, 6.75it/s, Generation Speed: 81.49 toks/s]\u001b[A\n",
"Processed prompts: 100%|ββββββββββ| 100/100 [01:29<00:00, 1.12it/s, Generation Speed: 83.23 toks/s][A\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "313dedca02184a419c132d0c400507d7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Flattening the indices: 0%| | 0/100 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Processed prompts: 0%| | 0/100 [00:00<?, ?it/s, Generation Speed: 0.00 toks/s]\u001b[A\n",
"Processed prompts: 1%| | 1/100 [00:35<58:52, 35.68s/it, Generation Speed: 1.71 toks/s]\u001b[A\n",
"Processed prompts: 4%|β | 4/100 [00:39<12:31, 7.83s/it, Generation Speed: 5.95 toks/s]\u001b[A\n",
"Processed prompts: 5%|β | 5/100 [00:42<09:59, 6.31s/it, Generation Speed: 7.04 toks/s]\u001b[A\n",
"Processed prompts: 6%|β | 6/100 [00:44<08:06, 5.18s/it, Generation Speed: 8.20 toks/s]\u001b[A\n",
"Processed prompts: 7%|β | 7/100 [00:45<06:04, 3.92s/it, Generation Speed: 9.38 toks/s]\u001b[A\n",
"Processed prompts: 9%|β | 9/100 [00:46<03:50, 2.53s/it, Generation Speed: 11.75 toks/s]\u001b[A\n",
"Processed prompts: 11%|β | 11/100 [00:47<02:31, 1.71s/it, Generation Speed: 14.45 toks/s]\u001b[A\n",
"Processed prompts: 13%|ββ | 13/100 [00:48<01:48, 1.25s/it, Generation Speed: 16.79 toks/s]\u001b[A\n",
"Processed prompts: 14%|ββ | 14/100 [00:49<01:40, 1.17s/it, Generation Speed: 17.76 toks/s]\u001b[A\n",
"Processed prompts: 15%|ββ | 15/100 [00:52<02:06, 1.49s/it, Generation Speed: 18.32 toks/s]\u001b[A\n",
"Processed prompts: 16%|ββ | 16/100 [00:52<01:51, 1.33s/it, Generation Speed: 19.28 toks/s]\u001b[A\n",
"Processed prompts: 17%|ββ | 17/100 [00:59<03:35, 2.60s/it, Generation Speed: 18.58 toks/s]\u001b[A\n",
"Processed prompts: 18%|ββ | 18/100 [01:00<02:55, 2.14s/it, Generation Speed: 19.45 toks/s]\u001b[A\n",
"Processed prompts: 19%|ββ | 19/100 [01:01<02:46, 2.05s/it, Generation Speed: 20.17 toks/s]\u001b[A\n",
"Processed prompts: 20%|ββ | 20/100 [01:02<02:12, 1.66s/it, Generation Speed: 21.22 toks/s]\u001b[A\n",
"Processed prompts: 21%|ββ | 21/100 [01:03<02:01, 1.53s/it, Generation Speed: 22.18 toks/s]\u001b[A\n",
"Processed prompts: 22%|βββ | 22/100 [01:04<01:37, 1.25s/it, Generation Speed: 23.18 toks/s]\u001b[A\n",
"Processed prompts: 25%|βββ | 25/100 [01:04<00:49, 1.51it/s, Generation Speed: 26.12 toks/s]\u001b[A\n",
"Processed prompts: 27%|βββ | 27/100 [01:05<00:38, 1.89it/s, Generation Speed: 28.47 toks/s]\u001b[A\n",
"Processed prompts: 30%|βββ | 30/100 [01:06<00:26, 2.60it/s, Generation Speed: 31.55 toks/s]\u001b[A\n",
"Processed prompts: 32%|ββββ | 32/100 [01:06<00:24, 2.80it/s, Generation Speed: 33.30 toks/s]\u001b[A\n",
"Processed prompts: 33%|ββββ | 33/100 [01:07<00:33, 2.01it/s, Generation Speed: 33.79 toks/s]\u001b[A\n",
"Processed prompts: 34%|ββββ | 34/100 [01:08<00:33, 1.96it/s, Generation Speed: 34.59 toks/s]\u001b[A\n",
"Processed prompts: 35%|ββββ | 35/100 [01:08<00:33, 1.92it/s, Generation Speed: 35.25 toks/s]\u001b[A\n",
"Processed prompts: 36%|ββββ | 36/100 [01:09<00:33, 1.89it/s, Generation Speed: 36.20 toks/s]\u001b[A\n",
"Processed prompts: 37%|ββββ | 37/100 [01:09<00:33, 1.89it/s, Generation Speed: 36.91 toks/s]\u001b[A\n",
"Processed prompts: 39%|ββββ | 39/100 [01:10<00:25, 2.40it/s, Generation Speed: 38.30 toks/s]\u001b[A\n",
"Processed prompts: 40%|ββββ | 40/100 [01:10<00:25, 2.31it/s, Generation Speed: 39.23 toks/s]\u001b[A\n",
"Processed prompts: 41%|ββββ | 41/100 [01:11<00:33, 1.76it/s, Generation Speed: 39.84 toks/s]\u001b[A\n",
"Processed prompts: 46%|βββββ | 46/100 [01:12<00:14, 3.77it/s, Generation Speed: 44.35 toks/s]\u001b[A\n",
"Processed prompts: 48%|βββββ | 48/100 [01:12<00:13, 3.90it/s, Generation Speed: 45.77 toks/s]\u001b[A\n",
"Processed prompts: 49%|βββββ | 49/100 [01:13<00:14, 3.48it/s, Generation Speed: 46.78 toks/s]\u001b[A\n",
"Processed prompts: 50%|βββββ | 50/100 [01:13<00:15, 3.21it/s, Generation Speed: 47.50 toks/s]\u001b[A\n",
"Processed prompts: 51%|βββββ | 51/100 [01:14<00:16, 3.01it/s, Generation Speed: 48.16 toks/s]\u001b[A\n",
"Processed prompts: 52%|ββββββ | 52/100 [01:14<00:21, 2.27it/s, Generation Speed: 48.56 toks/s]\u001b[A\n",
"Processed prompts: 53%|ββββββ | 53/100 [01:15<00:24, 1.90it/s, Generation Speed: 49.10 toks/s]\u001b[A\n",
"Processed prompts: 54%|ββββββ | 54/100 [01:16<00:22, 2.03it/s, Generation Speed: 49.65 toks/s]\u001b[A\n",
"Processed prompts: 56%|ββββββ | 56/100 [01:16<00:16, 2.74it/s, Generation Speed: 51.29 toks/s]\u001b[A\n",
"Processed prompts: 58%|ββββββ | 58/100 [01:17<00:15, 2.65it/s, Generation Speed: 52.81 toks/s]\u001b[A\n",
"Processed prompts: 59%|ββββββ | 59/100 [01:17<00:15, 2.63it/s, Generation Speed: 53.41 toks/s]\u001b[A\n",
"Processed prompts: 60%|ββββββ | 60/100 [01:18<00:18, 2.13it/s, Generation Speed: 53.86 toks/s]\u001b[A\n",
"Processed prompts: 62%|βββββββ | 62/100 [01:19<00:16, 2.35it/s, Generation Speed: 55.26 toks/s]\u001b[A\n",
"Processed prompts: 63%|βββββββ | 63/100 [01:19<00:15, 2.45it/s, Generation Speed: 55.90 toks/s]\u001b[A\n",
"Processed prompts: 64%|βββββββ | 64/100 [01:19<00:14, 2.54it/s, Generation Speed: 56.52 toks/s]\u001b[A\n",
"Processed prompts: 65%|βββββββ | 65/100 [01:20<00:13, 2.62it/s, Generation Speed: 57.04 toks/s]\u001b[A\n",
"Processed prompts: 66%|βββββββ | 66/100 [01:20<00:12, 2.68it/s, Generation Speed: 58.05 toks/s]\u001b[A\n",
"Processed prompts: 68%|βββββββ | 68/100 [01:21<00:11, 2.81it/s, Generation Speed: 59.16 toks/s]\u001b[A\n",
"Processed prompts: 69%|βββββββ | 69/100 [01:21<00:10, 2.91it/s, Generation Speed: 59.68 toks/s]\u001b[A\n",
"Processed prompts: 70%|βββββββ | 70/100 [01:21<00:09, 3.04it/s, Generation Speed: 60.50 toks/s]\u001b[A\n",
"Processed prompts: 72%|ββββββββ | 72/100 [01:22<00:06, 4.03it/s, Generation Speed: 62.17 toks/s]\u001b[A\n",
"Processed prompts: 74%|ββββββββ | 74/100 [01:22<00:06, 3.75it/s, Generation Speed: 63.42 toks/s]\u001b[A\n",
"Processed prompts: 76%|ββββββββ | 76/100 [01:23<00:07, 3.24it/s, Generation Speed: 64.56 toks/s]\u001b[A\n",
"Processed prompts: 79%|ββββββββ | 79/100 [01:23<00:05, 4.12it/s, Generation Speed: 66.59 toks/s]\u001b[A\n",
"Processed prompts: 81%|ββββββββ | 81/100 [01:24<00:03, 4.94it/s, Generation Speed: 68.17 toks/s]\u001b[A\n",
"Processed prompts: 83%|βββββββββ | 83/100 [01:24<00:02, 5.87it/s, Generation Speed: 69.77 toks/s]\u001b[A\n",
"Processed prompts: 85%|βββββββββ | 85/100 [01:24<00:02, 6.75it/s, Generation Speed: 71.43 toks/s]\u001b[A\n",
"Processed prompts: 86%|βββββββββ | 86/100 [01:25<00:03, 3.89it/s, Generation Speed: 71.70 toks/s]\u001b[A\n",
"Processed prompts: 87%|βββββββββ | 87/100 [01:25<00:03, 3.56it/s, Generation Speed: 72.29 toks/s]\u001b[A\n",
"Processed prompts: 88%|βββββββββ | 88/100 [01:26<00:03, 3.06it/s, Generation Speed: 72.75 toks/s]\u001b[A\n",
"Processed prompts: 91%|βββββββββ | 91/100 [01:26<00:01, 5.15it/s, Generation Speed: 75.68 toks/s]\u001b[A\n",
"Processed prompts: 92%|ββββββββββ| 92/100 [01:26<00:01, 4.75it/s, Generation Speed: 76.21 toks/s]\u001b[A\n",
"Processed prompts: 93%|ββββββββββ| 93/100 [01:26<00:01, 5.18it/s, Generation Speed: 77.29 toks/s]\u001b[A\n",
"Processed prompts: 96%|ββββββββββ| 96/100 [01:27<00:00, 6.97it/s, Generation Speed: 79.64 toks/s]\u001b[A\n",
"Processed prompts: 100%|ββββββββββ| 100/100 [01:31<00:00, 1.09it/s, Generation Speed: 79.51 toks/s]\u001b[A\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a74c464d5b044bf8829e5685c0f5f9a5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Flattening the indices: 0%| | 0/100 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Processed prompts: 0%| | 0/100 [00:00<?, ?it/s, Generation Speed: 0.00 toks/s]\u001b[A\n",
"Processed prompts: 1%| | 1/100 [00:35<58:17, 35.33s/it, Generation Speed: 1.73 toks/s]\u001b[A\n",
"Processed prompts: 2%|β | 2/100 [00:38<26:49, 16.43s/it, Generation Speed: 3.14 toks/s]\u001b[A\n",
"Processed prompts: 3%|β | 3/100 [00:40<16:14, 10.04s/it, Generation Speed: 4.56 toks/s]\u001b[A\n",
"Processed prompts: 4%|β | 4/100 [00:44<11:48, 7.38s/it, Generation Speed: 5.78 toks/s]\u001b[A\n",
"Processed prompts: 7%|β | 7/100 [00:46<05:05, 3.28s/it, Generation Speed: 9.58 toks/s]\u001b[A\n",
"Processed prompts: 8%|β | 8/100 [00:49<04:47, 3.12s/it, Generation Speed: 10.58 toks/s]\u001b[A\n",
"Processed prompts: 9%|β | 9/100 [00:50<03:53, 2.56s/it, Generation Speed: 11.83 toks/s]\u001b[A\n",
"Processed prompts: 13%|ββ | 13/100 [00:51<01:53, 1.31s/it, Generation Speed: 16.08 toks/s]\u001b[A\n",
"Processed prompts: 14%|ββ | 14/100 [00:52<01:45, 1.23s/it, Generation Speed: 16.97 toks/s]\u001b[A\n",
"Processed prompts: 15%|ββ | 15/100 [00:54<01:53, 1.33s/it, Generation Speed: 17.77 toks/s]\u001b[A\n",
"Processed prompts: 17%|ββ | 17/100 [00:55<01:22, 1.00it/s, Generation Speed: 19.93 toks/s]\u001b[A\n",
"Processed prompts: 19%|ββ | 19/100 [00:56<01:04, 1.26it/s, Generation Speed: 22.15 toks/s]\u001b[A\n",
"Processed prompts: 20%|ββ | 20/100 [00:57<01:17, 1.04it/s, Generation Speed: 22.94 toks/s]\u001b[A\n",
"Processed prompts: 21%|ββ | 21/100 [00:58<01:14, 1.07it/s, Generation Speed: 23.81 toks/s]\u001b[A\n",
"Processed prompts: 23%|βββ | 23/100 [00:59<00:56, 1.35it/s, Generation Speed: 25.74 toks/s]\u001b[A\n",
"Processed prompts: 24%|βββ | 24/100 [01:01<01:11, 1.06it/s, Generation Speed: 26.17 toks/s]\u001b[A\n",
"Processed prompts: 25%|βββ | 25/100 [01:01<01:07, 1.11it/s, Generation Speed: 27.17 toks/s]\u001b[A\n",
"Processed prompts: 26%|βββ | 26/100 [01:02<01:01, 1.21it/s, Generation Speed: 27.87 toks/s]\u001b[A\n",
"Processed prompts: 27%|βββ | 27/100 [01:03<01:07, 1.08it/s, Generation Speed: 28.18 toks/s]\u001b[A\n",
"Processed prompts: 28%|βββ | 28/100 [01:04<01:00, 1.19it/s, Generation Speed: 29.02 toks/s]\u001b[A\n",
"Processed prompts: 30%|βββ | 30/100 [01:05<00:51, 1.35it/s, Generation Speed: 30.59 toks/s]\u001b[A\n",
"Processed prompts: 31%|βββ | 31/100 [01:06<00:48, 1.42it/s, Generation Speed: 31.39 toks/s]\u001b[A\n",
"Processed prompts: 32%|ββββ | 32/100 [01:07<01:05, 1.04it/s, Generation Speed: 31.90 toks/s]\u001b[A\n",
"Processed prompts: 34%|ββββ | 34/100 [01:08<00:44, 1.48it/s, Generation Speed: 33.70 toks/s]\u001b[A\n",
"Processed prompts: 35%|ββββ | 35/100 [01:09<00:49, 1.31it/s, Generation Speed: 34.21 toks/s]\u001b[A\n",
"Processed prompts: 37%|ββββ | 37/100 [01:10<00:35, 1.77it/s, Generation Speed: 35.81 toks/s]\u001b[A\n",
"Processed prompts: 39%|ββββ | 39/100 [01:11<00:32, 1.86it/s, Generation Speed: 37.42 toks/s]\u001b[A\n",
"Processed prompts: 41%|ββββ | 41/100 [01:11<00:25, 2.31it/s, Generation Speed: 39.38 toks/s]\u001b[A\n",
"Processed prompts: 47%|βββββ | 47/100 [01:12<00:13, 3.84it/s, Generation Speed: 44.66 toks/s]\u001b[A\n",
"Processed prompts: 49%|βββββ | 49/100 [01:13<00:15, 3.36it/s, Generation Speed: 46.15 toks/s]\u001b[A\n",
"Processed prompts: 50%|βββββ | 50/100 [01:14<00:18, 2.70it/s, Generation Speed: 46.66 toks/s]\u001b[A\n",
"Processed prompts: 51%|βββββ | 51/100 [01:14<00:18, 2.64it/s, Generation Speed: 47.37 toks/s]\u001b[A\n",
"Processed prompts: 52%|ββββββ | 52/100 [01:15<00:26, 1.79it/s, Generation Speed: 47.73 toks/s]\u001b[A\n",
"Processed prompts: 53%|ββββββ | 53/100 [01:16<00:29, 1.61it/s, Generation Speed: 48.33 toks/s]\u001b[A\n",
"Processed prompts: 55%|ββββββ | 55/100 [01:17<00:27, 1.61it/s, Generation Speed: 49.34 toks/s]\u001b[A\n",
"Processed prompts: 56%|ββββββ | 56/100 [01:18<00:25, 1.72it/s, Generation Speed: 50.16 toks/s]\u001b[A\n",
"Processed prompts: 59%|ββββββ | 59/100 [01:19<00:20, 2.03it/s, Generation Speed: 52.09 toks/s]\u001b[A\n",
"Processed prompts: 60%|ββββββ | 60/100 [01:19<00:18, 2.12it/s, Generation Speed: 53.35 toks/s]\u001b[A\n",
"Processed prompts: 63%|βββββββ | 63/100 [01:20<00:11, 3.15it/s, Generation Speed: 55.82 toks/s]\u001b[A\n",
"Processed prompts: 65%|βββββββ | 65/100 [01:21<00:13, 2.67it/s, Generation Speed: 56.91 toks/s]\u001b[A\n",
"Processed prompts: 68%|βββββββ | 68/100 [01:21<00:08, 3.71it/s, Generation Speed: 59.13 toks/s]\u001b[A\n",
"Processed prompts: 70%|βββββββ | 70/100 [01:22<00:08, 3.61it/s, Generation Speed: 60.37 toks/s]\u001b[A\n",
"Processed prompts: 72%|ββββββββ | 72/100 [01:22<00:07, 3.62it/s, Generation Speed: 61.96 toks/s]\u001b[A\n",
"Processed prompts: 75%|ββββββββ | 75/100 [01:23<00:05, 4.82it/s, Generation Speed: 64.40 toks/s]\u001b[A\n",
"Processed prompts: 78%|ββββββββ | 78/100 [01:23<00:04, 5.27it/s, Generation Speed: 66.59 toks/s]\u001b[A\n",
"Processed prompts: 79%|ββββββββ | 79/100 [01:23<00:04, 5.07it/s, Generation Speed: 67.34 toks/s]\u001b[A\n",
"Processed prompts: 81%|ββββββββ | 81/100 [01:24<00:03, 4.86it/s, Generation Speed: 68.93 toks/s]\u001b[A\n",
"Processed prompts: 83%|βββββββββ | 83/100 [01:24<00:02, 5.72it/s, Generation Speed: 70.29 toks/s]\u001b[A\n",
"Processed prompts: 84%|βββββββββ | 84/100 [01:24<00:02, 5.62it/s, Generation Speed: 70.96 toks/s]\u001b[A\n",
"Processed prompts: 87%|βββββββββ | 87/100 [01:24<00:01, 6.51it/s, Generation Speed: 73.07 toks/s]\u001b[A\n",
"Processed prompts: 88%|βββββββββ | 88/100 [01:25<00:02, 4.66it/s, Generation Speed: 74.03 toks/s]\u001b[A\n",
"Processed prompts: 89%|βββββββββ | 89/100 [01:25<00:02, 4.30it/s, Generation Speed: 74.75 toks/s]\u001b[A\n",
"Processed prompts: 91%|βββββββββ | 91/100 [01:25<00:01, 5.77it/s, Generation Speed: 76.40 toks/s]\u001b[A\n",
"Processed prompts: 92%|ββββββββββ| 92/100 [01:26<00:01, 6.05it/s, Generation Speed: 77.10 toks/s]\u001b[A\n",
"Processed prompts: 94%|ββββββββββ| 94/100 [01:26<00:00, 7.81it/s, Generation Speed: 78.52 toks/s]\u001b[A\n",
"Processed prompts: 96%|ββββββββββ| 96/100 [01:26<00:00, 4.46it/s, Generation Speed: 79.58 toks/s]\u001b[A\n",
"Processed prompts: 98%|ββββββββββ| 98/100 [01:27<00:00, 5.58it/s, Generation Speed: 81.25 toks/s]\u001b[A\n",
"Processed prompts: 99%|ββββββββββ| 99/100 [01:27<00:00, 4.42it/s, Generation Speed: 81.90 toks/s]\u001b[A\n",
"Processed prompts: 100%|ββββββββββ| 100/100 [01:27<00:00, 1.14it/s, Generation Speed: 82.70 toks/s]\u001b[A\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e423bb10bcaa4d88a259a4d3f0e63564",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Flattening the indices: 0%| | 0/100 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Processed prompts: 0%| | 0/100 [00:00<?, ?it/s, Generation Speed: 0.00 toks/s]\u001b[A\n",
"Processed prompts: 1%| | 1/100 [00:34<56:53, 34.48s/it, Generation Speed: 1.62 toks/s]\u001b[A\n",
"Processed prompts: 2%|β | 2/100 [00:36<24:45, 15.15s/it, Generation Speed: 3.27 toks/s]\u001b[A\n",
"Processed prompts: 3%|β | 3/100 [00:41<17:31, 10.84s/it, Generation Speed: 4.33 toks/s]\u001b[A\n",
"Processed prompts: 5%|β | 5/100 [00:42<07:48, 4.93s/it, Generation Speed: 7.04 toks/s]\u001b[A\n",
"Processed prompts: 6%|β | 6/100 [00:43<05:52, 3.74s/it, Generation Speed: 8.29 toks/s]\u001b[A\n",
"Processed prompts: 7%|β | 7/100 [00:44<04:29, 2.89s/it, Generation Speed: 9.42 toks/s]\u001b[A\n",
"Processed prompts: 8%|β | 8/100 [00:45<03:30, 2.29s/it, Generation Speed: 10.31 toks/s]\u001b[A\n",
"Processed prompts: 9%|β | 9/100 [00:48<03:55, 2.59s/it, Generation Speed: 11.10 toks/s]\u001b[A\n",
"Processed prompts: 11%|β | 11/100 [00:49<02:21, 1.59s/it, Generation Speed: 13.85 toks/s]\u001b[A\n",
"Processed prompts: 13%|ββ | 13/100 [00:50<01:38, 1.13s/it, Generation Speed: 16.08 toks/s]\u001b[A\n",
"Processed prompts: 14%|ββ | 14/100 [00:50<01:31, 1.06s/it, Generation Speed: 17.35 toks/s]\u001b[A\n",
"Processed prompts: 16%|ββ | 16/100 [00:51<01:07, 1.24it/s, Generation Speed: 19.59 toks/s]\u001b[A\n",
"Processed prompts: 17%|ββ | 17/100 [00:53<01:23, 1.00s/it, Generation Speed: 20.22 toks/s]\u001b[A\n",
"Processed prompts: 18%|ββ | 18/100 [00:56<01:53, 1.39s/it, Generation Speed: 20.56 toks/s]\u001b[A\n",
"Processed prompts: 19%|ββ | 19/100 [00:56<01:42, 1.26s/it, Generation Speed: 21.22 toks/s]\u001b[A\n",
"Processed prompts: 20%|ββ | 20/100 [00:57<01:33, 1.16s/it, Generation Speed: 21.89 toks/s]\u001b[A\n",
"Processed prompts: 21%|ββ | 21/100 [00:58<01:26, 1.09s/it, Generation Speed: 22.46 toks/s]\u001b[A\n",
"Processed prompts: 22%|βββ | 22/100 [01:00<01:38, 1.26s/it, Generation Speed: 23.33 toks/s]\u001b[A\n",
"Processed prompts: 24%|βββ | 24/100 [01:01<01:06, 1.14it/s, Generation Speed: 25.46 toks/s]\u001b[A\n",
"Processed prompts: 25%|βββ | 25/100 [01:02<01:04, 1.17it/s, Generation Speed: 26.51 toks/s]\u001b[A\n",
"Processed prompts: 28%|βββ | 28/100 [01:02<00:37, 1.94it/s, Generation Speed: 29.67 toks/s]\u001b[A\n",
"Processed prompts: 29%|βββ | 29/100 [01:04<00:52, 1.34it/s, Generation Speed: 29.87 toks/s]\u001b[A\n",
"Processed prompts: 30%|βββ | 30/100 [01:04<00:49, 1.42it/s, Generation Speed: 30.75 toks/s]\u001b[A\n",
"Processed prompts: 32%|ββββ | 32/100 [01:05<00:36, 1.87it/s, Generation Speed: 32.95 toks/s]\u001b[A\n",
"Processed prompts: 37%|ββββ | 37/100 [01:06<00:25, 2.47it/s, Generation Speed: 37.30 toks/s]\u001b[A\n",
"Processed prompts: 38%|ββββ | 38/100 [01:07<00:26, 2.37it/s, Generation Speed: 38.21 toks/s]\u001b[A\n",
"Processed prompts: 39%|ββββ | 39/100 [01:07<00:26, 2.27it/s, Generation Speed: 38.83 toks/s]\u001b[A\n",
"Processed prompts: 40%|ββββ | 40/100 [01:08<00:27, 2.20it/s, Generation Speed: 39.32 toks/s]\u001b[A\n",
"Processed prompts: 41%|ββββ | 41/100 [01:08<00:27, 2.18it/s, Generation Speed: 40.11 toks/s]\u001b[A\n",
"Processed prompts: 43%|βββββ | 43/100 [01:09<00:21, 2.68it/s, Generation Speed: 41.99 toks/s]\u001b[A\n",
"Processed prompts: 44%|βββββ | 44/100 [01:09<00:22, 2.50it/s, Generation Speed: 42.85 toks/s]\u001b[A\n",
"Processed prompts: 45%|βββββ | 45/100 [01:10<00:22, 2.41it/s, Generation Speed: 43.72 toks/s]\u001b[A\n",
"Processed prompts: 46%|βββββ | 46/100 [01:10<00:22, 2.35it/s, Generation Speed: 44.42 toks/s]\u001b[A\n",
"Processed prompts: 47%|βββββ | 47/100 [01:11<00:22, 2.31it/s, Generation Speed: 45.05 toks/s]\u001b[A\n",
"Processed prompts: 48%|βββββ | 48/100 [01:12<00:35, 1.47it/s, Generation Speed: 45.14 toks/s]\u001b[A\n",
"Processed prompts: 49%|βββββ | 49/100 [01:13<00:31, 1.64it/s, Generation Speed: 46.21 toks/s]\u001b[A\n",
"Processed prompts: 50%|βββββ | 50/100 [01:13<00:27, 1.80it/s, Generation Speed: 46.94 toks/s]\u001b[A\n",
"Processed prompts: 52%|ββββββ | 52/100 [01:14<00:23, 2.04it/s, Generation Speed: 48.45 toks/s]\u001b[A\n",
"Processed prompts: 53%|ββββββ | 53/100 [01:15<00:26, 1.74it/s, Generation Speed: 48.99 toks/s]\u001b[A\n",
"Processed prompts: 55%|ββββββ | 55/100 [01:15<00:23, 1.95it/s, Generation Speed: 50.24 toks/s]\u001b[A\n",
"Processed prompts: 56%|ββββββ | 56/100 [01:16<00:21, 2.04it/s, Generation Speed: 50.89 toks/s]\u001b[A\n",
"Processed prompts: 57%|ββββββ | 57/100 [01:16<00:20, 2.13it/s, Generation Speed: 51.76 toks/s]\u001b[A\n",
"Processed prompts: 58%|ββββββ | 58/100 [01:17<00:23, 1.80it/s, Generation Speed: 52.02 toks/s]\u001b[A\n",
"Processed prompts: 59%|ββββββ | 59/100 [01:17<00:20, 1.96it/s, Generation Speed: 52.84 toks/s]\u001b[A\n",
"Processed prompts: 61%|ββββββ | 61/100 [01:18<00:17, 2.22it/s, Generation Speed: 54.06 toks/s]\u001b[A\n",
"Processed prompts: 62%|βββββββ | 62/100 [01:19<00:16, 2.33it/s, Generation Speed: 54.64 toks/s]\u001b[A\n",
"Processed prompts: 63%|βββββββ | 63/100 [01:19<00:15, 2.41it/s, Generation Speed: 55.33 toks/s]\u001b[A\n",
"Processed prompts: 64%|βββββββ | 64/100 [01:20<00:18, 1.99it/s, Generation Speed: 55.72 toks/s]\u001b[A\n",
"Processed prompts: 66%|βββββββ | 66/100 [01:20<00:12, 2.79it/s, Generation Speed: 57.21 toks/s]\u001b[A\n",
"Processed prompts: 67%|βββββββ | 67/100 [01:20<00:11, 2.89it/s, Generation Speed: 57.63 toks/s]\u001b[A\n",
"Processed prompts: 68%|βββββββ | 68/100 [01:21<00:10, 3.00it/s, Generation Speed: 58.23 toks/s]\u001b[A\n",
"Processed prompts: 70%|βββββββ | 70/100 [01:21<00:07, 3.96it/s, Generation Speed: 59.78 toks/s]\u001b[A\n",
"Processed prompts: 73%|ββββββββ | 73/100 [01:21<00:04, 5.50it/s, Generation Speed: 61.97 toks/s]\u001b[A\n",
"Processed prompts: 74%|ββββββββ | 74/100 [01:22<00:05, 4.98it/s, Generation Speed: 62.71 toks/s]\u001b[A\n",
"Processed prompts: 75%|ββββββββ | 75/100 [01:22<00:05, 4.69it/s, Generation Speed: 63.60 toks/s]\u001b[A\n",
"Processed prompts: 77%|ββββββββ | 77/100 [01:22<00:05, 4.39it/s, Generation Speed: 64.91 toks/s]\u001b[A\n",
"Processed prompts: 78%|ββββββββ | 78/100 [01:23<00:05, 4.34it/s, Generation Speed: 65.62 toks/s]\u001b[A\n",
"Processed prompts: 79%|ββββββββ | 79/100 [01:23<00:06, 3.44it/s, Generation Speed: 66.22 toks/s]\u001b[A\n",
"Processed prompts: 80%|ββββββββ | 80/100 [01:23<00:06, 2.98it/s, Generation Speed: 66.92 toks/s]\u001b[A\n",
"Processed prompts: 82%|βββββββββ | 82/100 [01:24<00:05, 3.50it/s, Generation Speed: 68.65 toks/s]\u001b[A\n",
"Processed prompts: 84%|βββββββββ | 84/100 [01:24<00:04, 3.95it/s, Generation Speed: 70.35 toks/s]\u001b[A\n",
"Processed prompts: 88%|βββββββββ | 88/100 [01:24<00:01, 6.89it/s, Generation Speed: 73.40 toks/s]\u001b[A\n",
"Processed prompts: 89%|βββββββββ | 89/100 [01:25<00:01, 5.75it/s, Generation Speed: 73.88 toks/s]\u001b[A\n",
"Processed prompts: 90%|βββββββββ | 90/100 [01:25<00:02, 4.98it/s, Generation Speed: 74.43 toks/s]\u001b[A\n",
"Processed prompts: 91%|βββββββββ | 91/100 [01:25<00:01, 4.70it/s, Generation Speed: 74.99 toks/s]\u001b[A\n",
"Processed prompts: 92%|ββββββββββ| 92/100 [01:26<00:01, 5.23it/s, Generation Speed: 75.88 toks/s]\u001b[A\n",
"Processed prompts: 95%|ββββββββββ| 95/100 [01:26<00:00, 7.43it/s, Generation Speed: 78.29 toks/s]\u001b[A\n",
"Processed prompts: 96%|ββββββββββ| 96/100 [01:26<00:00, 5.83it/s, Generation Speed: 78.96 toks/s]\u001b[A\n",
"Processed prompts: 97%|ββββββββββ| 97/100 [01:26<00:00, 6.36it/s, Generation Speed: 80.01 toks/s]\u001b[A\n",
"Processed prompts: 98%|ββββββββββ| 98/100 [01:27<00:00, 4.03it/s, Generation Speed: 80.47 toks/s]\u001b[A\n",
"Processed prompts: 99%|ββββββββββ| 99/100 [01:27<00:00, 3.19it/s, Generation Speed: 81.10 toks/s]\u001b[A\n",
"Processed prompts: 100%|ββββββββββ| 100/100 [01:27<00:00, 1.14it/s, Generation Speed: 81.90 toks/s]\u001b[A\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "333c59bbe9a34c8c8f167978b055b16e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Flattening the indices: 0%| | 0/100 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Processed prompts: 0%| | 0/100 [00:00<?, ?it/s, Generation Speed: 0.00 toks/s]\u001b[A\n",
"Processed prompts: 1%| | 1/100 [00:33<56:03, 33.98s/it, Generation Speed: 1.65 toks/s]\u001b[A\n",
"Processed prompts: 2%|β | 2/100 [00:38<27:26, 16.80s/it, Generation Speed: 3.12 toks/s]\u001b[A\n",
"Processed prompts: 3%|β | 3/100 [00:43<18:31, 11.45s/it, Generation Speed: 4.29 toks/s]\u001b[A\n",
"Processed prompts: 4%|β | 4/100 [00:47<13:20, 8.34s/it, Generation Speed: 5.44 toks/s]\u001b[A\n",
"Processed prompts: 5%|β | 5/100 [00:49<09:27, 5.97s/it, Generation Speed: 6.51 toks/s]\u001b[A\n",
"Processed prompts: 6%|β | 6/100 [00:50<07:06, 4.53s/it, Generation Speed: 7.52 toks/s]\u001b[A\n",
"Processed prompts: 7%|β | 7/100 [00:52<05:37, 3.63s/it, Generation Speed: 8.48 toks/s]\u001b[A\n",
"Processed prompts: 9%|β | 9/100 [00:53<03:10, 2.09s/it, Generation Speed: 10.82 toks/s]\u001b[A\n",
"Processed prompts: 10%|β | 10/100 [00:55<03:00, 2.01s/it, Generation Speed: 11.51 toks/s]\u001b[A\n",
"Processed prompts: 11%|β | 11/100 [00:56<02:32, 1.71s/it, Generation Speed: 12.66 toks/s]\u001b[A\n",
"Processed prompts: 12%|ββ | 12/100 [00:57<02:11, 1.49s/it, Generation Speed: 13.84 toks/s]\u001b[A\n",
"Processed prompts: 13%|ββ | 13/100 [00:58<01:55, 1.32s/it, Generation Speed: 15.02 toks/s]\u001b[A\n",
"Processed prompts: 14%|ββ | 14/100 [00:58<01:43, 1.20s/it, Generation Speed: 15.88 toks/s]\u001b[A\n",
"Processed prompts: 16%|ββ | 16/100 [00:59<01:11, 1.17it/s, Generation Speed: 17.98 toks/s]\u001b[A\n",
"Processed prompts: 17%|ββ | 17/100 [01:01<01:29, 1.08s/it, Generation Speed: 18.75 toks/s]\u001b[A\n",
"Processed prompts: 19%|ββ | 19/100 [01:03<01:16, 1.06it/s, Generation Speed: 20.85 toks/s]\u001b[A\n",
"Processed prompts: 22%|βββ | 22/100 [01:03<00:46, 1.68it/s, Generation Speed: 24.00 toks/s]\u001b[A\n",
"Processed prompts: 23%|βββ | 23/100 [01:04<00:46, 1.67it/s, Generation Speed: 25.23 toks/s]\u001b[A\n",
"Processed prompts: 26%|βββ | 26/100 [01:05<00:37, 1.99it/s, Generation Speed: 28.01 toks/s]\u001b[A\n",
"Processed prompts: 29%|βββ | 29/100 [01:06<00:26, 2.64it/s, Generation Speed: 31.07 toks/s]\u001b[A\n",
"Processed prompts: 32%|ββββ | 32/100 [01:06<00:21, 3.21it/s, Generation Speed: 34.49 toks/s]\u001b[A\n",
"Processed prompts: 33%|ββββ | 33/100 [01:07<00:23, 2.84it/s, Generation Speed: 35.12 toks/s]\u001b[A\n",
"Processed prompts: 35%|ββββ | 35/100 [01:07<00:21, 3.00it/s, Generation Speed: 36.88 toks/s]\u001b[A\n",
"Processed prompts: 37%|ββββ | 37/100 [01:08<00:20, 3.14it/s, Generation Speed: 38.66 toks/s]\u001b[A\n",
"Processed prompts: 38%|ββββ | 38/100 [01:08<00:21, 2.82it/s, Generation Speed: 39.50 toks/s]\u001b[A\n",
"Processed prompts: 40%|ββββ | 40/100 [01:09<00:19, 3.07it/s, Generation Speed: 41.04 toks/s]\u001b[A\n",
"Processed prompts: 41%|ββββ | 41/100 [01:09<00:21, 2.75it/s, Generation Speed: 41.86 toks/s]\u001b[A\n",
"Processed prompts: 42%|βββββ | 42/100 [01:10<00:28, 2.03it/s, Generation Speed: 42.62 toks/s]\u001b[A\n",
"Processed prompts: 43%|βββββ | 43/100 [01:11<00:27, 2.09it/s, Generation Speed: 43.49 toks/s]\u001b[A\n",
"Processed prompts: 45%|βββββ | 45/100 [01:11<00:20, 2.68it/s, Generation Speed: 45.21 toks/s]\u001b[A\n",
"Processed prompts: 46%|βββββ | 46/100 [01:12<00:20, 2.62it/s, Generation Speed: 46.16 toks/s]\u001b[A\n",
"Processed prompts: 48%|βββββ | 48/100 [01:12<00:15, 3.26it/s, Generation Speed: 47.83 toks/s]\u001b[A\n",
"Processed prompts: 50%|βββββ | 50/100 [01:13<00:20, 2.41it/s, Generation Speed: 48.81 toks/s]\u001b[A\n",
"Processed prompts: 52%|ββββββ | 52/100 [01:16<00:35, 1.37it/s, Generation Speed: 48.66 toks/s]\u001b[A\n",
"Processed prompts: 53%|ββββββ | 53/100 [01:17<00:35, 1.32it/s, Generation Speed: 49.01 toks/s]\u001b[A\n",
"Processed prompts: 55%|ββββββ | 55/100 [01:18<00:27, 1.63it/s, Generation Speed: 50.43 toks/s]\u001b[A\n",
"Processed prompts: 57%|ββββββ | 57/100 [01:18<00:20, 2.13it/s, Generation Speed: 51.95 toks/s]\u001b[A\n",
"Processed prompts: 61%|ββββββ | 61/100 [01:19<00:12, 3.00it/s, Generation Speed: 55.09 toks/s]\u001b[A\n",
"Processed prompts: 62%|βββββββ | 62/100 [01:19<00:12, 2.98it/s, Generation Speed: 56.03 toks/s]\u001b[A\n",
"Processed prompts: 63%|βββββββ | 63/100 [01:19<00:12, 2.95it/s, Generation Speed: 56.65 toks/s]\u001b[A\n",
"Processed prompts: 65%|βββββββ | 65/100 [01:20<00:10, 3.49it/s, Generation Speed: 57.79 toks/s]\u001b[A\n",
"Processed prompts: 66%|βββββββ | 66/100 [01:20<00:10, 3.35it/s, Generation Speed: 58.32 toks/s]\u001b[A\n",
"Processed prompts: 67%|βββββββ | 67/100 [01:21<00:12, 2.67it/s, Generation Speed: 58.78 toks/s]\u001b[A\n",
"Processed prompts: 68%|βββββββ | 68/100 [01:21<00:11, 2.75it/s, Generation Speed: 59.43 toks/s]\u001b[A\n",
"Processed prompts: 69%|βββββββ | 69/100 [01:21<00:10, 2.86it/s, Generation Speed: 60.33 toks/s]\u001b[A\n",
"Processed prompts: 70%|βββββββ | 70/100 [01:22<00:10, 2.96it/s, Generation Speed: 60.77 toks/s]\u001b[A\n",
"Processed prompts: 71%|βββββββ | 71/100 [01:22<00:09, 3.07it/s, Generation Speed: 61.37 toks/s]\u001b[A\n",
"Processed prompts: 72%|ββββββββ | 72/100 [01:22<00:08, 3.16it/s, Generation Speed: 62.29 toks/s]\u001b[A\n",
"Processed prompts: 75%|ββββββββ | 75/100 [01:23<00:04, 5.11it/s, Generation Speed: 64.48 toks/s]\u001b[A\n",
"Processed prompts: 77%|ββββββββ | 77/100 [01:23<00:06, 3.79it/s, Generation Speed: 65.36 toks/s]\u001b[A\n",
"Processed prompts: 78%|ββββββββ | 78/100 [01:24<00:05, 3.80it/s, Generation Speed: 66.04 toks/s]\u001b[A\n",
"Processed prompts: 80%|ββββββββ | 80/100 [01:24<00:05, 3.99it/s, Generation Speed: 67.40 toks/s]\u001b[A\n",
"Processed prompts: 81%|ββββββββ | 81/100 [01:24<00:05, 3.49it/s, Generation Speed: 68.12 toks/s]\u001b[A\n",
"Processed prompts: 83%|βββββββββ | 83/100 [01:25<00:03, 4.50it/s, Generation Speed: 69.84 toks/s]\u001b[A\n",
"Processed prompts: 85%|βββββββββ | 85/100 [01:25<00:03, 4.77it/s, Generation Speed: 71.08 toks/s]\u001b[A\n",
"Processed prompts: 86%|βββββββββ | 86/100 [01:25<00:02, 4.86it/s, Generation Speed: 71.78 toks/s]\u001b[A\n",
"Processed prompts: 87%|βββββββββ | 87/100 [01:25<00:02, 4.99it/s, Generation Speed: 72.56 toks/s]\u001b[A\n",
"Processed prompts: 88%|βββββββββ | 88/100 [01:26<00:03, 3.64it/s, Generation Speed: 73.08 toks/s]\u001b[A\n",
"Processed prompts: 89%|βββββββββ | 89/100 [01:26<00:03, 3.46it/s, Generation Speed: 73.96 toks/s]\u001b[A\n",
"Processed prompts: 91%|βββββββββ | 91/100 [01:26<00:01, 5.12it/s, Generation Speed: 75.58 toks/s]\u001b[A\n",
"Processed prompts: 92%|ββββββββββ| 92/100 [01:27<00:01, 4.73it/s, Generation Speed: 76.30 toks/s]\u001b[A\n",
"Processed prompts: 95%|ββββββββββ| 95/100 [01:27<00:00, 6.06it/s, Generation Speed: 78.64 toks/s]\u001b[A\n",
"Processed prompts: 96%|ββββββββββ| 96/100 [01:27<00:00, 5.80it/s, Generation Speed: 79.32 toks/s]\u001b[A\n",
"Processed prompts: 97%|ββββββββββ| 97/100 [01:28<00:00, 3.48it/s, Generation Speed: 79.91 toks/s]\u001b[A\n",
"Processed prompts: 99%|ββββββββββ| 99/100 [01:29<00:00, 2.14it/s, Generation Speed: 80.91 toks/s]\u001b[A\n",
"Processed prompts: 100%|ββββββββββ| 100/100 [01:30<00:00, 1.10it/s, Generation Speed: 81.45 toks/s]\u001b[A\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bf7c43131bac4c8aa22c0cd1988e6368",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Flattening the indices: 0%| | 0/100 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Processed prompts: 0%| | 0/100 [00:00<?, ?it/s, Generation Speed: 0.00 toks/s]\u001b[A\n",
"Processed prompts: 1%| | 1/100 [00:27<45:52, 27.80s/it, Generation Speed: 1.83 toks/s]\u001b[A\n",
"Processed prompts: 2%|β | 2/100 [00:36<27:23, 16.77s/it, Generation Speed: 2.88 toks/s]\u001b[A\n",
"Processed prompts: 3%|β | 3/100 [00:40<17:39, 10.92s/it, Generation Speed: 4.14 toks/s]\u001b[A\n",
"Processed prompts: 4%|β | 4/100 [00:42<11:38, 7.27s/it, Generation Speed: 5.37 toks/s]\u001b[A\n",
"Processed prompts: 5%|β | 5/100 [00:43<07:50, 4.95s/it, Generation Speed: 6.74 toks/s]\u001b[A\n",
"Processed prompts: 6%|β | 6/100 [00:45<06:02, 3.86s/it, Generation Speed: 7.90 toks/s]\u001b[A\n",
"Processed prompts: 7%|β | 7/100 [00:48<05:45, 3.72s/it, Generation Speed: 8.89 toks/s]\u001b[A\n",
"Processed prompts: 9%|β | 9/100 [00:49<03:13, 2.12s/it, Generation Speed: 11.46 toks/s]\u001b[A\n",
"Processed prompts: 10%|β | 10/100 [00:50<02:41, 1.80s/it, Generation Speed: 12.59 toks/s]\u001b[A\n",
"Processed prompts: 11%|β | 11/100 [00:51<02:17, 1.54s/it, Generation Speed: 13.89 toks/s]\u001b[A\n",
"Processed prompts: 12%|ββ | 12/100 [00:52<02:19, 1.59s/it, Generation Speed: 14.77 toks/s]\u001b[A\n",
"Processed prompts: 13%|ββ | 13/100 [00:53<01:59, 1.38s/it, Generation Speed: 16.01 toks/s]\u001b[A\n",
"Processed prompts: 15%|ββ | 15/100 [00:55<01:36, 1.14s/it, Generation Speed: 18.23 toks/s]\u001b[A\n",
"Processed prompts: 17%|ββ | 17/100 [00:56<01:11, 1.17it/s, Generation Speed: 20.34 toks/s]\u001b[A\n",
"Processed prompts: 19%|ββ | 19/100 [00:57<01:09, 1.17it/s, Generation Speed: 22.22 toks/s]\u001b[A\n",
"Processed prompts: 20%|ββ | 20/100 [00:58<01:08, 1.17it/s, Generation Speed: 23.31 toks/s]\u001b[A\n",
"Processed prompts: 21%|ββ | 21/100 [01:00<01:22, 1.04s/it, Generation Speed: 23.86 toks/s]\u001b[A\n",
"Processed prompts: 22%|βββ | 22/100 [01:01<01:17, 1.00it/s, Generation Speed: 24.77 toks/s]\u001b[A\n",
"Processed prompts: 25%|βββ | 25/100 [01:02<00:46, 1.60it/s, Generation Speed: 27.93 toks/s]\u001b[A\n",
"Processed prompts: 26%|βββ | 26/100 [01:02<00:45, 1.62it/s, Generation Speed: 28.97 toks/s]\u001b[A\n",
"Processed prompts: 27%|βββ | 27/100 [01:03<00:44, 1.62it/s, Generation Speed: 29.88 toks/s]\u001b[A\n",
"Processed prompts: 28%|βββ | 28/100 [01:04<00:54, 1.32it/s, Generation Speed: 30.07 toks/s]\u001b[A\n",
"Processed prompts: 29%|βββ | 29/100 [01:05<00:51, 1.39it/s, Generation Speed: 30.77 toks/s]\u001b[A\n",
"Processed prompts: 30%|βββ | 30/100 [01:06<00:59, 1.17it/s, Generation Speed: 31.36 toks/s]\u001b[A\n",
"Processed prompts: 31%|βββ | 31/100 [01:08<01:16, 1.11s/it, Generation Speed: 31.65 toks/s]\u001b[A\n",
"Processed prompts: 32%|ββββ | 32/100 [01:09<01:13, 1.08s/it, Generation Speed: 32.33 toks/s]\u001b[A\n",
"Processed prompts: 37%|ββββ | 37/100 [01:09<00:26, 2.36it/s, Generation Speed: 36.98 toks/s]\u001b[A\n",
"Processed prompts: 40%|ββββ | 40/100 [01:09<00:19, 3.06it/s, Generation Speed: 39.68 toks/s]\u001b[A\n",
"Processed prompts: 42%|βββββ | 42/100 [01:10<00:21, 2.72it/s, Generation Speed: 41.15 toks/s]\u001b[A\n",
"Processed prompts: 44%|βββββ | 44/100 [01:12<00:24, 2.24it/s, Generation Speed: 42.28 toks/s]\u001b[A\n",
"Processed prompts: 48%|βββββ | 48/100 [01:12<00:15, 3.33it/s, Generation Speed: 46.17 toks/s]\u001b[A\n",
"Processed prompts: 49%|βββββ | 49/100 [01:13<00:19, 2.68it/s, Generation Speed: 46.53 toks/s]\u001b[A\n",
"Processed prompts: 50%|βββββ | 50/100 [01:13<00:19, 2.63it/s, Generation Speed: 47.32 toks/s]\u001b[A\n",
"Processed prompts: 52%|ββββββ | 52/100 [01:14<00:15, 3.04it/s, Generation Speed: 49.06 toks/s]\u001b[A\n",
"Processed prompts: 53%|ββββββ | 53/100 [01:14<00:16, 2.90it/s, Generation Speed: 49.59 toks/s]\u001b[A\n",
"Processed prompts: 54%|ββββββ | 54/100 [01:15<00:16, 2.74it/s, Generation Speed: 50.06 toks/s]\u001b[A\n",
"Processed prompts: 55%|ββββββ | 55/100 [01:16<00:21, 2.10it/s, Generation Speed: 50.28 toks/s]\u001b[A\n",
"Processed prompts: 56%|ββββββ | 56/100 [01:17<00:28, 1.53it/s, Generation Speed: 50.64 toks/s]\u001b[A\n",
"Processed prompts: 60%|ββββββ | 60/100 [01:18<00:15, 2.62it/s, Generation Speed: 53.87 toks/s]\u001b[A\n",
"Processed prompts: 61%|ββββββ | 61/100 [01:18<00:17, 2.24it/s, Generation Speed: 54.15 toks/s]\u001b[A\n",
"Processed prompts: 63%|βββββββ | 63/100 [01:19<00:13, 2.76it/s, Generation Speed: 55.39 toks/s]\u001b[A\n",
"Processed prompts: 64%|βββββββ | 64/100 [01:19<00:15, 2.34it/s, Generation Speed: 55.90 toks/s]\u001b[A\n",
"Processed prompts: 66%|βββββββ | 66/100 [01:21<00:17, 1.94it/s, Generation Speed: 56.73 toks/s]\u001b[A\n",
"Processed prompts: 67%|βββββββ | 67/100 [01:21<00:15, 2.13it/s, Generation Speed: 57.66 toks/s]\u001b[A\n",
"Processed prompts: 68%|βββββββ | 68/100 [01:21<00:13, 2.32it/s, Generation Speed: 58.13 toks/s]\u001b[A\n",
"Processed prompts: 69%|βββββββ | 69/100 [01:22<00:12, 2.51it/s, Generation Speed: 59.04 toks/s]\u001b[A\n",
"Processed prompts: 73%|ββββββββ | 73/100 [01:23<00:09, 2.98it/s, Generation Speed: 62.34 toks/s]\u001b[A\n",
"Processed prompts: 75%|ββββββββ | 75/100 [01:23<00:06, 3.65it/s, Generation Speed: 64.16 toks/s]\u001b[A\n",
"Processed prompts: 77%|ββββββββ | 77/100 [01:23<00:05, 4.32it/s, Generation Speed: 65.71 toks/s]\u001b[A\n",
"Processed prompts: 78%|ββββββββ | 78/100 [01:24<00:05, 4.24it/s, Generation Speed: 66.38 toks/s]\u001b[A\n",
"Processed prompts: 80%|ββββββββ | 80/100 [01:24<00:05, 3.69it/s, Generation Speed: 67.56 toks/s]\u001b[A\n",
"Processed prompts: 82%|βββββββββ | 82/100 [01:24<00:03, 4.61it/s, Generation Speed: 69.18 toks/s]\u001b[A\n",
"Processed prompts: 84%|βββββββββ | 84/100 [01:25<00:02, 5.55it/s, Generation Speed: 70.69 toks/s]\u001b[A\n",
"Processed prompts: 86%|βββββββββ | 86/100 [01:25<00:02, 6.50it/s, Generation Speed: 72.19 toks/s]\u001b[A\n",
"Processed prompts: 88%|βββββββββ | 88/100 [01:25<00:01, 7.50it/s, Generation Speed: 73.84 toks/s]\u001b[A\n",
"Processed prompts: 89%|βββββββββ | 89/100 [01:25<00:01, 7.25it/s, Generation Speed: 74.64 toks/s]\u001b[A\n",
"Processed prompts: 90%|βββββββββ | 90/100 [01:25<00:01, 7.13it/s, Generation Speed: 75.24 toks/s]\u001b[A\n",
"Processed prompts: 91%|βββββββββ | 91/100 [01:26<00:01, 6.94it/s, Generation Speed: 76.05 toks/s]\u001b[A\n",
"Processed prompts: 92%|ββββββββββ| 92/100 [01:26<00:01, 5.75it/s, Generation Speed: 76.62 toks/s]\u001b[A\n",
"Processed prompts: 93%|ββββββββββ| 93/100 [01:26<00:01, 6.17it/s, Generation Speed: 77.30 toks/s]\u001b[A\n",
"Processed prompts: 94%|ββββββββββ| 94/100 [01:26<00:01, 4.53it/s, Generation Speed: 77.83 toks/s]\u001b[A\n",
"Processed prompts: 95%|ββββββββββ| 95/100 [01:27<00:01, 3.85it/s, Generation Speed: 78.53 toks/s]\u001b[A\n",
"Processed prompts: 96%|ββββββββββ| 96/100 [01:27<00:00, 4.58it/s, Generation Speed: 79.37 toks/s]\u001b[A\n",
"Processed prompts: 97%|ββββββββββ| 97/100 [01:27<00:00, 3.04it/s, Generation Speed: 79.74 toks/s]\u001b[A\n",
"Processed prompts: 98%|ββββββββββ| 98/100 [01:28<00:00, 3.49it/s, Generation Speed: 80.63 toks/s]\u001b[A\n",
"Processed prompts: 100%|ββββββββββ| 100/100 [01:29<00:00, 1.12it/s, Generation Speed: 81.78 toks/s]\u001b[A\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0aa4ac3c1c3a4ccd9d27972d0cb776c9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Flattening the indices: 0%| | 0/100 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"def process_batch(batch, batch_size, retry_count=0, max_retries=3, min_batch_size=25):\n",
" if len(batch) == 0:\n",
" return []\n",
"\n",
" batch_prompts = batch[\"prompt\"]\n",
"\n",
" try:\n",
" batch_results = generator(batch_prompts, sampling_params=params)\n",
" return batch.add_column(\n",
" \"generations\",\n",
" [result.model_dump_json() for result in batch_results],\n",
" )\n",
" except Exception as e:\n",
" print(f\"Error in generation for batch (size {len(batch)}): {e}\")\n",
"\n",
" if retry_count >= max_retries or batch_size <= min_batch_size:\n",
" print(\"Max retries reached or batch size too small. Skipping batch.\")\n",
" return []\n",
"\n",
" print(f\"Splitting batch and retrying (retry count: {retry_count + 1})\")\n",
" num_sub_batches = 2 ** (retry_count + 1)\n",
" sub_batch_size = max(batch_size // num_sub_batches, min_batch_size)\n",
" sub_batches = [\n",
" batch.shard(num_shards=num_sub_batches, index=i)\n",
" for i in range(num_sub_batches)\n",
" ]\n",
" print(f\"Sub batch size {sub_batch_size}\")\n",
" updated_sub_batches = []\n",
" for sub_batch in sub_batches:\n",
" updated_sub_batch = process_batch(\n",
" sub_batch, sub_batch_size, retry_count + 1, max_retries, min_batch_size\n",
" )\n",
" if len(updated_sub_batch) > 0:\n",
" updated_sub_batches.append(updated_sub_batch)\n",
"\n",
" return concatenate_datasets(updated_sub_batches) if updated_sub_batches else []\n",
"\n",
"\n",
"initial_batch_size = 100\n",
"num_batches = len(ds) // initial_batch_size + (len(ds) % initial_batch_size != 0)\n",
"dataset_parts = [ds.shard(num_shards=num_batches, index=i) for i in range(num_batches)]\n",
"\n",
"updated_parts = []\n",
"for part in tqdm(dataset_parts):\n",
" updated_part = process_batch(part, initial_batch_size)\n",
" if len(updated_part) > 0:\n",
" updated_parts.append(updated_part)\n",
"\n",
"if updated_parts:\n",
" ds = concatenate_datasets(updated_parts)\n",
"else:\n",
" print(\"No successfully updated parts. The dataset remains unchanged.\")"
]
},
{
"cell_type": "markdown",
"id": "6f7768ac",
"metadata": {},
"source": [
"If we look at our dataset we can see that we have a new column called `generations` which contains the generated data."
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "490bf0b4-469b-4594-94a9-98916a47441e",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"Dataset({\n",
" features: ['id', 'section', 'prompt', 'generations'],\n",
" num_rows: 1000\n",
"})"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds"
]
},
{
"cell_type": "markdown",
"id": "457cc887-7931-43dc-a261-74e27fba2f28",
"metadata": {},
"source": [
"Let's look at an example row"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "66b0a713-b2f6-4668-ad37-72073bbd8397",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'id': '116s4049rs',\n",
" 'section': 'rear admiral in the Navy, or an equivalent grade in the Space Force is under investigation for alleged misconduct or pending the disposition of an adverse personnel action at the time of retirement, the Secretary of the military department concerned mayβ (A) conditionally determine the highest permanent grade of satisfactory service on active duty of the officer pending completion of the investigation or resolution of the personnel action, as applicable; and (B) retire the officer in that conditional grade, subject to subsection (e).',\n",
" 'prompt': \"Write one good and three bad abstract descriptions of the following text. Output the descriptions in a JSON file with keys βgoodβ and βbadβ.\\nExample:\\nText: Community Energy Savings Program Act of 2019\\n\\nThis bill directs the Department of Energy to establish a grant program for states and Indian tribes to provide loans to consumers and communities that want to implement cost-effective energy efficiency measures.\\nGood description: A legislative proposal to promote energy efficiency through financial incentives\\nBad description: A federal reform relating to the process for submitting planning applications related to oil pipelines\\n\\nNote: Descriptions can vary in abstraction, detail, and focus. Both good and bad descriptions should be short (max 20 words)\\n\\nText to describe: rear admiral in the Navy, or an equivalent grade in the Space Force is under investigation for alleged misconduct or pending the disposition of an adverse personnel action at the time of retirement, the Secretary of the military department concerned mayβ (A) conditionally determine the highest permanent grade of satisfactory service on active duty of the officer pending completion of the investigation or resolution of the personnel action, as applicable; and (B) retire the officer in that conditional grade, subject to subsection (e).\\nReturn a JSON object with the keys 'good' and 'bad' using this schema: {'properties': {'good': {'items': {'maxLength': 200, 'minLength': 20, 'type': 'string'}, 'maxItems': 1, 'minItems': 1, 'title': 'Good', 'type': 'array'}, 'bad': {'items': {'maxLength': 200, 'minLength': 20, 'type': 'string'}, 'maxItems': 3, 'minItems': 3, 'title': 'Bad', 'type': 'array'}}, 'required': ['good', 'bad'], 'title': 'AbstractDescriptions', 'type': 'object'}.\",\n",
" 'generations': '{\"good\":[\"Retirement of rear admiral under investigation for misconduct may be conditional on the outcome of the investigation and resolution of personnel actions.\"],\"bad\":[\"A proposal to change the retirement benefits for military personnel based on their years of service.\",\"Legislation to implement new training programs for naval officers.\",\"Investigation process for harassment complaints in the military.\"]}'}"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds[0]"
]
},
{
"cell_type": "markdown",
"id": "4d048ff2-49bc-44fd-947b-facdc3977c85",
"metadata": {},
"source": [
"We'll do some more work to format the dataset in a format that is compatible with Sentence Transformers training APIs but let's already push to the raw dataset to the Hub. We can push this to a config called `raw`."
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "ee860819-fb00-4795-a75f-63d5b7961dee",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ec47fd798c884451b528398b7a2de379",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ed56cf35793749ee862cc3ad6b42db6f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1e1348c5bf9947c8bbf1741004acb3e8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"README.md: 0%| | 0.00/798 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"CommitInfo(commit_url='https://huggingface.co/datasets/davanstrien/bill_summary_us_chunks-similarity-yi/commit/026cf1d1555ec6fece47b57fe54dc0d01f793221', commit_message='Upload dataset', commit_description='', oid='026cf1d1555ec6fece47b57fe54dc0d01f793221', pr_url=None, pr_revision=None, pr_num=None)"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds.push_to_hub('bill_summary_us_chunks-similarity', \"raw\")"
]
},
{
"cell_type": "markdown",
"id": "7e441ea9",
"metadata": {},
"source": [
"We can also see that we can load an example from the `generations` column as valid JSON."
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "f02932d7-aac7-41de-af0f-7072ff3c1a79",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'good': ['Retirement of rear admiral under investigation for misconduct may be conditional on the outcome of the investigation and resolution of personnel actions.'],\n",
" 'bad': ['A proposal to change the retirement benefits for military personnel based on their years of service.',\n",
" 'Legislation to implement new training programs for naval officers.',\n",
" 'Investigation process for harassment complaints in the military.']}"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"json.loads(ds[0]['generations'])"
]
},
{
"cell_type": "markdown",
"id": "4d842519-b64d-4e39-817c-112af8bc5013",
"metadata": {},
"source": [
"### Formatting the dataset for Sentence Transformers\n",
"\n",
"Sentence Transformers requires a dataset with three columns: \"anchor\", \"positive\", and \"negative\". We can now format our dataset in this way.\n",
"\n",
"For now we'll just randomly select a positive and negative example from the generations we created. A later notebook will look at how we can select the best positive and negative examples for each anchor text in other ways."
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "f4f03c81-0687-4842-8d35-366430502884",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def format_for_st(row):\n",
" anchor = row[\"section\"]\n",
" generations = json.loads(row[\"generations\"])\n",
" good = generations.get(\"good\")\n",
" bad = generations.get(\"bad\")\n",
" positive = random.choice(good)\n",
" negative = random.choice(bad)\n",
" return {\"anchor\": anchor, \"positive\": positive, \"negative\": negative}"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "e14b7b6b-d818-4bd3-a673-a1c005b99832",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'anchor': 'rear admiral in the Navy, or an equivalent grade in the Space Force is under investigation for alleged misconduct or pending the disposition of an adverse personnel action at the time of retirement, the Secretary of the military department concerned mayβ (A) conditionally determine the highest permanent grade of satisfactory service on active duty of the officer pending completion of the investigation or resolution of the personnel action, as applicable; and (B) retire the officer in that conditional grade, subject to subsection (e).',\n",
" 'positive': 'Retirement of rear admiral under investigation for misconduct may be conditional on the outcome of the investigation and resolution of personnel actions.',\n",
" 'negative': 'Legislation to implement new training programs for naval officers.'}"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"format_for_st(ds[0])"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "187730e1-ba8c-4477-84c7-52f93a0cc2a3",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c9c7c837a8ba4731920494575f5a5773",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map: 0%| | 0/1000 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"ds = ds.map(format_for_st)"
]
},
{
"cell_type": "markdown",
"id": "86a62b23",
"metadata": {},
"source": [
"We remove all the unnecessary columns"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "9d44960e-c4f8-46ac-bee0-393416508912",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"ds = ds.remove_columns([c for c in ds.column_names if c not in { 'anchor', 'positive', 'negative'}])"
]
},
{
"cell_type": "markdown",
"id": "61229f25",
"metadata": {},
"source": [
"We now push to the Hub, this time we don't specify a config so it will be pushed to the default config."
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "c47e5f2c-eebe-46c8-93c3-dfab78318007",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7ed7ee9174bd4995b5342733ae766658",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b2815fe9ee2d413d900d8e335e4034e3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2f709f07095441b8a38cce34d8eaca5a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"README.md: 0%| | 0.00/732 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"info = ds.push_to_hub('bill_summary_us_chunks-similarity')"
]
},
{
"cell_type": "markdown",
"id": "0fcba1cc",
"metadata": {},
"source": [
"### Add some metadata to the Dataset Card\n",
"\n",
"We can now add some metadata to the dataset card. This will help us keep track of the dataset and understand how it was created."
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "d6afcc00-1512-4ded-a36d-5e5d866112d9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"card = DatasetCard.load(\"davanstrien/bill-summary-us-similarity\")"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "a92bea99-1e80-4711-9d6a-e1ea4afb56ab",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"card.data['tags'] = ['sentence-transformers', 'synthetic' ,\"synthetic-data-workshop\"]"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "5126dd9a-9d73-4f6e-967b-ac93506bb720",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"CommitInfo(commit_url='https://huggingface.co/datasets/davanstrien/bill_summary_us_chunks-similarity/commit/8cf7a2e9209f631f5395296b0f8ee081101f4479', commit_message='Upload README.md with huggingface_hub', commit_description='', oid='8cf7a2e9209f631f5395296b0f8ee081101f4479', pr_url=None, pr_revision=None, pr_num=None)"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"card.push_to_hub(\"davanstrien/bill_summary_us_chunks-similarity\")"
]
},
{
"cell_type": "markdown",
"id": "5dfd1c60",
"metadata": {},
"source": [
"fin"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|