Spaces:
Paused
Paused
File size: 8,446 Bytes
fe9092a 8035330 97809c3 253bbca fe9092a 6ac4ade 8035330 fe9092a 3b22eeb fe9092a 3b22eeb 2d83410 fe9092a becbbb8 fe9092a 2d83410 fe9092a c892caa c0cfc84 fe9092a 253bbca fe9092a 253bbca fe9092a cc9c5eb fe9092a 419fdd6 fe9092a 419fdd6 8035330 bc828c5 fe9092a 1a058f6 5ee18ab 0a15754 ec5b5a2 1a058f6 6ac4ade 51484a8 5ee18ab 97809c3 6ac4ade fe9092a c616690 419fdd6 c616690 8035330 ef69b25 fe9092a ef69b25 8035330 c0cfc84 3b22eeb becbbb8 3b22eeb fe9092a 2d83410 75141de 8035330 3b22eeb becbbb8 75141de becbbb8 3b22eeb 75141de 97809c3 2d83410 8035330 253bbca 8035330 419fdd6 fe9092a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import asyncio
import json
import logging
import os
import re
from contextlib import asynccontextmanager
from datetime import datetime
from pathlib import Path
from typing import Annotated, List
from cashews import NOT_NONE, cache
from dotenv import load_dotenv
from fastapi import BackgroundTasks, FastAPI, Header, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from httpx import AsyncClient
from huggingface_hub import CommitScheduler, DatasetCard, HfApi, hf_hub_download, whoami
from huggingface_hub.utils import disable_progress_bars, logging
from huggingface_hub.utils._errors import HTTPError
from langfuse.openai import AsyncOpenAI # OpenAI integration
from pydantic import BaseModel, Field
from starlette.responses import RedirectResponse
from card_processing import parse_markdown, try_load_text, is_empty_template
disable_progress_bars()
load_dotenv()
logger = logging.get_logger(__name__)
Gb = 1073741824
cache.setup("disk://", size_limit=16 * Gb) # configure as in-memory cache
VOTES_FILE = "data/votes.jsonl"
HF_TOKEN = os.getenv("HF_TOKEN")
hf_api = HfApi(token=HF_TOKEN)
async_httpx_client = AsyncClient()
scheduler = CommitScheduler(
repo_id="davanstrien/summary-ratings",
repo_type="dataset",
folder_path="data",
path_in_repo="data",
every=5,
token=HF_TOKEN,
hf_api=hf_api,
)
@asynccontextmanager
async def lifespan(app: FastAPI):
logger.info("Running startup event")
if not Path(VOTES_FILE).exists():
path = hf_hub_download(
repo_id="davanstrien/summary-ratings",
filename="data/votes.jsonl",
repo_type="dataset",
token=HF_TOKEN,
local_dir=".",
local_dir_use_symlinks=False,
)
logger.info(f"Downloaded votes.jsonl to {path}")
yield
app = FastAPI() # )lifespan=lifespan)
# Configure CORS
origins = [
"https://huggingface.co",
"chrome-extension://deckahggoiaphiebdipfbiinmaihfpbk", # Replace with your Chrome plugin ID
]
# Configure CORS settings
app.add_middleware(
CORSMiddleware,
allow_origins=[
"https://huggingface.co/datasets/*"
], # Update with your frontend URL
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def save_vote(vote_entry):
with scheduler.lock:
with open(VOTES_FILE, "a") as file:
date_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
vote_entry["timestamp"] = date_time
file.write(json.dumps(vote_entry) + "\n")
logger.info(f"Vote saved: {vote_entry}")
@app.get("/", include_in_schema=False)
def root():
return RedirectResponse(url="/docs")
class Vote(BaseModel):
dataset: str
description: str
vote: int = Field(..., ge=-1, le=1)
userID: str
def validate_token(token: str = Header(None)) -> bool:
try:
whoami(token)
return True
except HTTPError:
return False
@app.post("/vote")
async def receive_vote(
vote: Vote,
Authorization: Annotated[str, Header()],
background_tasks: BackgroundTasks,
):
if not validate_token(Authorization):
logger.error("Invalid token")
raise HTTPException(status_code=401, detail="Invalid token")
vote_entry = {
"dataset": vote.dataset,
"vote": vote.vote,
"description": vote.description,
"userID": vote.userID,
}
# Append the vote entry to the JSONL file
background_tasks.add_task(save_vote, vote_entry)
return JSONResponse(content={"message": "Vote submitted successfully"})
def format_prompt(card: str) -> str:
return f"""
Write a tl;dr summary of a dataset based on the dataset card. Focus on the most critical aspects of the dataset.
The summary should aim to concisely describe the dataset.
CARD: \n\n{card[:6000]}
---
\n\nInstructions:
If the card provides the necessary information, say what the dataset can be used for.
You do not need to mention that the dataset is hosted or available on the Hugging Face Hub.
Do not mention the license of the dataset.
Do not mention the number of examples in the training or test split.
Only mention size if there is extensive discussion of the scale of the dataset in the dataset card.
Do not speculate on anything not explicitly mentioned in the dataset card.
In general avoid references to the quality of the dataset i.e. don't use phrases like 'a high-quality dataset' in the summary.
\n\nOne sentence summary:"""
async def check_when_dataset_last_modified(dataset_id: str) -> datetime | None:
try:
response = await async_httpx_client.get(
f"https://huggingface.co/api/datasets/{dataset_id}"
)
if last_modified := response.json().get("lastModified"):
return datetime.fromisoformat(last_modified)
return None
except Exception as e:
logger.error(e)
return None
@cache(ttl="48h", condition=NOT_NONE, key="predict:{dataset_id}")
async def predict(card: str, dataset_id: str) -> str | None:
try:
prompt = format_prompt(card)
client = AsyncOpenAI(
base_url="https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1/v1",
api_key=HF_TOKEN,
)
chat_completion = await client.chat.completions.create(
model="tgi",
messages=[
{"role": "user", "content": prompt},
],
stream=False,
tags=["tldr-summaries"],
)
return chat_completion.choices[0].message.content.strip()
except Exception as e:
logger.error(e)
return None
@app.get("/summary")
async def get_summary(dataset_id: str) -> str | None:
"""
Get a summary for a dataset based on the provided dataset ID.
Args:
dataset_id (str): The ID of the dataset to retrieve the summary for.
Returns:
str | None: The generated summary for the dataset, or None if no summary is available or an error occurs."""
try:
# dataset_id = request.dataset_id
card_text = await async_httpx_client.get(
f"https://huggingface.co/datasets/{dataset_id}/raw/main/README.md"
)
card_text = card_text.text
card = DatasetCard(card_text)
text = card.text
parsed_text = parse_markdown(text)
if is_empty_template(parsed_text):
return None
cache_key = f"predict:{dataset_id}"
cached_data = await cache.get(cache_key)
if cached_data is not None:
cached_summary, cached_last_modified_time = cached_data
# Get the current last modified time of the dataset
current_last_modified_time = await check_when_dataset_last_modified(
dataset_id
)
if (
current_last_modified_time is None
or cached_last_modified_time >= current_last_modified_time
):
# Use the cached summary if the cached last modified time is greater than or equal to the current last modified time
logger.info("Using cached summary")
return cached_summary
summary = await predict(parsed_text, dataset_id)
current_last_modified_time = await check_when_dataset_last_modified(dataset_id)
await cache.set(cache_key, (summary, current_last_modified_time))
return summary
except Exception as e:
logger.error(e)
return None
class SummariesRequest(BaseModel):
dataset_ids: List[str]
@cache(ttl="1h", condition=NOT_NONE)
@app.post("/summaries")
async def get_summaries(request: SummariesRequest) -> dict:
"""
Get summaries for a list of datasets based on the provided dataset IDs.
Args:
dataset_ids (List[str]): A list of dataset IDs to retrieve the summaries for.
Returns:
dict: A dictionary mapping dataset IDs to their corresponding summaries.
"""
dataset_ids = request.dataset_ids
async def get_summary_wrapper(dataset_id):
return dataset_id, await get_summary(dataset_id)
summary_tasks = [get_summary_wrapper(dataset_id) for dataset_id in dataset_ids]
summaries = dict(await asyncio.gather(*summary_tasks))
for dataset_id in dataset_ids:
if summaries[dataset_id] is None:
summaries[dataset_id] = "No summary available"
return summaries
|