File size: 7,723 Bytes
8e0b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from dataclasses import dataclass
from typing import Optional

import torch
import torch.nn.functional as F
from torch import nn

from x3D_utils import BaseModule
from basic_transformer_block import BasicTransformerBlock


class Transformer1D(BaseModule):
    @dataclass
    class Config(BaseModule.Config):
        num_attention_heads: int = 16
        attention_head_dim: int = 88
        in_channels: Optional[int] = None
        out_channels: Optional[int] = None
        num_layers: int = 1
        dropout: float = 0.0
        norm_num_groups: int = 32
        cross_attention_dim: Optional[int] = None
        attention_bias: bool = False
        activation_fn: str = "geglu"
        only_cross_attention: bool = False
        double_self_attention: bool = False
        upcast_attention: bool = False
        norm_type: str = "layer_norm"
        norm_elementwise_affine: bool = True
        gradient_checkpointing: bool = False

    cfg: Config

    def configure(self) -> None:
        self.num_attention_heads = self.cfg.num_attention_heads
        self.attention_head_dim = self.cfg.attention_head_dim
        inner_dim = self.num_attention_heads * self.attention_head_dim

        linear_cls = nn.Linear

        # 2. Define input layers
        self.in_channels = self.cfg.in_channels

        self.norm = torch.nn.GroupNorm(
            num_groups=self.cfg.norm_num_groups,
            num_channels=self.cfg.in_channels,
            eps=1e-6,
            affine=True,
        )
        self.proj_in = linear_cls(self.cfg.in_channels, inner_dim)

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    self.num_attention_heads,
                    self.attention_head_dim,
                    dropout=self.cfg.dropout,
                    cross_attention_dim=self.cfg.cross_attention_dim,
                    activation_fn=self.cfg.activation_fn,
                    attention_bias=self.cfg.attention_bias,
                    only_cross_attention=self.cfg.only_cross_attention,
                    double_self_attention=self.cfg.double_self_attention,
                    upcast_attention=self.cfg.upcast_attention,
                    norm_type=self.cfg.norm_type,
                    norm_elementwise_affine=self.cfg.norm_elementwise_affine,
                )
                for d in range(self.cfg.num_layers)
            ]
        )

        # 4. Define output layers
        self.out_channels = (
            self.cfg.in_channels
            if self.cfg.out_channels is None
            else self.cfg.out_channels
        )

        self.proj_out = linear_cls(inner_dim, self.cfg.in_channels)

        self.gradient_checkpointing = self.cfg.gradient_checkpointing

    def forward(

        self,

        hidden_states: torch.Tensor,

        encoder_hidden_states: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        encoder_attention_mask: Optional[torch.Tensor] = None,

    ):
        """

        The [`Transformer1DModel`] forward method.



        Args:

            hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):

                Input `hidden_states`.

            encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):

                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to

                self-attention.

            attention_mask ( `torch.Tensor`, *optional*):

                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask

                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large

                negative values to the attention scores corresponding to "discard" tokens.

            encoder_attention_mask ( `torch.Tensor`, *optional*):

                Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:



                    * Mask `(batch, sequence_length)` True = keep, False = discard.

                    * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.



                If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format

                above. This bias will be added to the cross-attention scores.



        Returns:

            torch.FloatTensor

        """
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None and attention_mask.ndim == 2:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (
                1 - encoder_attention_mask.to(hidden_states.dtype)
            ) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # 1. Input
        batch, _, seq_len = hidden_states.shape
        residual = hidden_states

        hidden_states = self.norm(hidden_states)
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 1).reshape(
            batch, seq_len, inner_dim
        )
        hidden_states = self.proj_in(hidden_states)

        # 2. Blocks
        for block in self.transformer_blocks:
            if self.training and self.gradient_checkpointing:
                hidden_states = torch.utils.checkpoint.checkpoint(
                    block,
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    use_reentrant=False,
                )
            else:
                hidden_states = block(
                    hidden_states,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                )

        # 3. Output
        hidden_states = self.proj_out(hidden_states)
        hidden_states = (
            hidden_states.reshape(batch, seq_len, inner_dim)
            .permute(0, 2, 1)
            .contiguous()
        )

        output = hidden_states + residual

        return output