File size: 8,496 Bytes
8e0b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
import torch.nn as nn
import torch.nn.functional as F

from utils.metrics import bbox_iou


def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
    """select the positive anchor center in gt



    Args:

        xy_centers (Tensor): shape(h*w, 4)

        gt_bboxes (Tensor): shape(b, n_boxes, 4)

    Return:

        (Tensor): shape(b, n_boxes, h*w)

    """
    n_anchors = xy_centers.shape[0]
    bs, n_boxes, _ = gt_bboxes.shape
    lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2)  # left-top, right-bottom
    bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1)
    # return (bbox_deltas.min(3)[0] > eps).to(gt_bboxes.dtype)
    return bbox_deltas.amin(3).gt_(eps)


def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
    """if an anchor box is assigned to multiple gts,

        the one with the highest iou will be selected.



    Args:

        mask_pos (Tensor): shape(b, n_max_boxes, h*w)

        overlaps (Tensor): shape(b, n_max_boxes, h*w)

    Return:

        target_gt_idx (Tensor): shape(b, h*w)

        fg_mask (Tensor): shape(b, h*w)

        mask_pos (Tensor): shape(b, n_max_boxes, h*w)

    """
    # (b, n_max_boxes, h*w) -> (b, h*w)
    fg_mask = mask_pos.sum(-2)
    if fg_mask.max() > 1:  # one anchor is assigned to multiple gt_bboxes
        mask_multi_gts = (fg_mask.unsqueeze(1) > 1).repeat([1, n_max_boxes, 1])  # (b, n_max_boxes, h*w)
        max_overlaps_idx = overlaps.argmax(1)  # (b, h*w)
        is_max_overlaps = F.one_hot(max_overlaps_idx, n_max_boxes)  # (b, h*w, n_max_boxes)
        is_max_overlaps = is_max_overlaps.permute(0, 2, 1).to(overlaps.dtype)  # (b, n_max_boxes, h*w)
        mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos)  # (b, n_max_boxes, h*w)
        fg_mask = mask_pos.sum(-2)
    # find each grid serve which gt(index)
    target_gt_idx = mask_pos.argmax(-2)  # (b, h*w)
    return target_gt_idx, fg_mask, mask_pos


class TaskAlignedAssigner(nn.Module):
    def __init__(self, topk=13, num_classes=80, alpha=1.0, beta=6.0, eps=1e-9):
        super().__init__()
        self.topk = topk
        self.num_classes = num_classes
        self.bg_idx = num_classes
        self.alpha = alpha
        self.beta = beta
        self.eps = eps

    @torch.no_grad()
    def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt):
        """This code referenced to

           https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py



        Args:

            pd_scores (Tensor): shape(bs, num_total_anchors, num_classes)

            pd_bboxes (Tensor): shape(bs, num_total_anchors, 4)

            anc_points (Tensor): shape(num_total_anchors, 2)

            gt_labels (Tensor): shape(bs, n_max_boxes, 1)

            gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)

            mask_gt (Tensor): shape(bs, n_max_boxes, 1)

        Returns:

            target_labels (Tensor): shape(bs, num_total_anchors)

            target_bboxes (Tensor): shape(bs, num_total_anchors, 4)

            target_scores (Tensor): shape(bs, num_total_anchors, num_classes)

            fg_mask (Tensor): shape(bs, num_total_anchors)

        """
        self.bs = pd_scores.size(0)
        self.n_max_boxes = gt_bboxes.size(1)

        if self.n_max_boxes == 0:
            device = gt_bboxes.device
            return (torch.full_like(pd_scores[..., 0], self.bg_idx).to(device),
                    torch.zeros_like(pd_bboxes).to(device),
                    torch.zeros_like(pd_scores).to(device),
                    torch.zeros_like(pd_scores[..., 0]).to(device),
                    torch.zeros_like(pd_scores[..., 0]).to(device))

        mask_pos, align_metric, overlaps = self.get_pos_mask(pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points,
                                                             mask_gt)

        target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes)

        # assigned target
        target_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask)

        # normalize
        align_metric *= mask_pos
        pos_align_metrics = align_metric.amax(axis=-1, keepdim=True)  # b, max_num_obj
        pos_overlaps = (overlaps * mask_pos).amax(axis=-1, keepdim=True)  # b, max_num_obj
        norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)
        target_scores = target_scores * norm_align_metric

        return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx

    def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):

        # get anchor_align metric, (b, max_num_obj, h*w)
        align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes)
        # get in_gts mask, (b, max_num_obj, h*w)
        mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes)
        # get topk_metric mask, (b, max_num_obj, h*w)
        mask_topk = self.select_topk_candidates(align_metric * mask_in_gts,
                                                topk_mask=mask_gt.repeat([1, 1, self.topk]).bool())
        # merge all mask to a final mask, (b, max_num_obj, h*w)
        mask_pos = mask_topk * mask_in_gts * mask_gt

        return mask_pos, align_metric, overlaps

    def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes):

        gt_labels = gt_labels.to(torch.long)  # b, max_num_obj, 1
        ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long)  # 2, b, max_num_obj
        ind[0] = torch.arange(end=self.bs).view(-1, 1).repeat(1, self.n_max_boxes)  # b, max_num_obj
        ind[1] = gt_labels.squeeze(-1)  # b, max_num_obj
        # get the scores of each grid for each gt cls
        bbox_scores = pd_scores[ind[0], :, ind[1]]  # b, max_num_obj, h*w

        overlaps = bbox_iou(gt_bboxes.unsqueeze(2), pd_bboxes.unsqueeze(1), xywh=False, CIoU=True).squeeze(3).clamp(0)
        align_metric = bbox_scores.pow(self.alpha) * (overlaps).pow(self.beta)
        return align_metric, overlaps

    def select_topk_candidates(self, metrics, largest=True, topk_mask=None):
        """

        Args:

            metrics: (b, max_num_obj, h*w).

            topk_mask: (b, max_num_obj, topk) or None

        """

        num_anchors = metrics.shape[-1]  # h*w
        # (b, max_num_obj, topk)
        topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest)
        if topk_mask is None:
            topk_mask = (topk_metrics.max(-1, keepdim=True) > self.eps).tile([1, 1, self.topk])
        # (b, max_num_obj, topk)
        topk_idxs = torch.where(topk_mask, topk_idxs, 0)
        # (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)
        is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(-2)
        # filter invalid bboxes
        # assigned topk should be unique, this is for dealing with empty labels
        # since empty labels will generate index `0` through `F.one_hot`
        # NOTE: but what if the topk_idxs include `0`?
        is_in_topk = torch.where(is_in_topk > 1, 0, is_in_topk)
        return is_in_topk.to(metrics.dtype)

    def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
        """

        Args:

            gt_labels: (b, max_num_obj, 1)

            gt_bboxes: (b, max_num_obj, 4)

            target_gt_idx: (b, h*w)

            fg_mask: (b, h*w)

        """

        # assigned target labels, (b, 1)
        batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
        target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes  # (b, h*w)
        target_labels = gt_labels.long().flatten()[target_gt_idx]  # (b, h*w)

        # assigned target boxes, (b, max_num_obj, 4) -> (b, h*w)
        target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]

        # assigned target scores
        target_labels.clamp(0)
        target_scores = F.one_hot(target_labels, self.num_classes)  # (b, h*w, 80)
        fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes)  # (b, h*w, 80)
        target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)

        return target_labels, target_bboxes, target_scores