File size: 6,409 Bytes
8e0b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import argparse
import platform
import sys
import time
from pathlib import Path

import pandas as pd

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLO root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd())  # relative

import export
from models.experimental import attempt_load
from models.yolo import SegmentationModel
from segment.val import run as val_seg
from utils import notebook_init
from utils.general import LOGGER, check_yaml, file_size, print_args
from utils.torch_utils import select_device
from val import run as val_det


def run(

        weights=ROOT / 'yolo.pt',  # weights path

        imgsz=640,  # inference size (pixels)

        batch_size=1,  # batch size

        data=ROOT / 'data/coco.yaml',  # dataset.yaml path

        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu

        half=False,  # use FP16 half-precision inference

        test=False,  # test exports only

        pt_only=False,  # test PyTorch only

        hard_fail=False,  # throw error on benchmark failure

):
    y, t = [], time.time()
    device = select_device(device)
    model_type = type(attempt_load(weights, fuse=False))  # DetectionModel, SegmentationModel, etc.
    for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows():  # index, (name, file, suffix, CPU, GPU)
        try:
            assert i not in (9, 10), 'inference not supported'  # Edge TPU and TF.js are unsupported
            assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13'  # CoreML
            if 'cpu' in device.type:
                assert cpu, 'inference not supported on CPU'
            if 'cuda' in device.type:
                assert gpu, 'inference not supported on GPU'

            # Export
            if f == '-':
                w = weights  # PyTorch format
            else:
                w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]  # all others
            assert suffix in str(w), 'export failed'

            # Validate
            if model_type == SegmentationModel:
                result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
                metric = result[0][7]  # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
            else:  # DetectionModel:
                result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
                metric = result[0][3]  # (p, r, map50, map, *loss(box, obj, cls))
            speed = result[2][1]  # times (preprocess, inference, postprocess)
            y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)])  # MB, mAP, t_inference
        except Exception as e:
            if hard_fail:
                assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
            LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}')
            y.append([name, None, None, None])  # mAP, t_inference
        if pt_only and i == 0:
            break  # break after PyTorch

    # Print results
    LOGGER.info('\n')
    parse_opt()
    notebook_init()  # print system info
    c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
    py = pd.DataFrame(y, columns=c)
    LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
    LOGGER.info(str(py if map else py.iloc[:, :2]))
    if hard_fail and isinstance(hard_fail, str):
        metrics = py['mAP50-95'].array  # values to compare to floor
        floor = eval(hard_fail)  # minimum metric floor to pass
        assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}'
    return py


def test(

        weights=ROOT / 'yolo.pt',  # weights path

        imgsz=640,  # inference size (pixels)

        batch_size=1,  # batch size

        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path

        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu

        half=False,  # use FP16 half-precision inference

        test=False,  # test exports only

        pt_only=False,  # test PyTorch only

        hard_fail=False,  # throw error on benchmark failure

):
    y, t = [], time.time()
    device = select_device(device)
    for i, (name, f, suffix, gpu) in export.export_formats().iterrows():  # index, (name, file, suffix, gpu-capable)
        try:
            w = weights if f == '-' else \
                export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]  # weights
            assert suffix in str(w), 'export failed'
            y.append([name, True])
        except Exception:
            y.append([name, False])  # mAP, t_inference

    # Print results
    LOGGER.info('\n')
    parse_opt()
    notebook_init()  # print system info
    py = pd.DataFrame(y, columns=['Format', 'Export'])
    LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
    LOGGER.info(str(py))
    return py


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='weights path')
    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--test', action='store_true', help='test exports only')
    parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
    parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric')
    opt = parser.parse_args()
    opt.data = check_yaml(opt.data)  # check YAML
    print_args(vars(opt))
    return opt


def main(opt):
    test(**vars(opt)) if opt.test else run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)