File size: 12,285 Bytes
8e0b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os

import torch
import torch.nn as nn
import torch.nn.functional as F

from torchvision.ops import sigmoid_focal_loss

from utils.general import xywh2xyxy, xyxy2xywh
from utils.metrics import bbox_iou
from utils.segment.tal.anchor_generator import dist2bbox, make_anchors, bbox2dist
from utils.segment.tal.assigner import TaskAlignedAssigner
from utils.torch_utils import de_parallel
from utils.segment.general import crop_mask


def smooth_BCE(eps=0.1):  # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
    # return positive, negative label smoothing BCE targets
    return 1.0 - 0.5 * eps, 0.5 * eps


class VarifocalLoss(nn.Module):
    # Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367
    def __init__(self):
        super().__init__()

    def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0):
        weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
        with torch.cuda.amp.autocast(enabled=False):
            loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(),
                                                       reduction="none") * weight).sum()
        return loss


class FocalLoss(nn.Module):
    # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
        super().__init__()
        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = loss_fcn.reduction
        self.loss_fcn.reduction = "none"  # required to apply FL to each element

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        # p_t = torch.exp(-loss)
        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability

        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
        pred_prob = torch.sigmoid(pred)  # prob from logits
        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
        modulating_factor = (1.0 - p_t) ** self.gamma
        loss *= alpha_factor * modulating_factor

        if self.reduction == "mean":
            return loss.mean()
        elif self.reduction == "sum":
            return loss.sum()
        else:  # 'none'
            return loss


class BboxLoss(nn.Module):
    def __init__(self, reg_max, use_dfl=False):
        super().__init__()
        self.reg_max = reg_max
        self.use_dfl = use_dfl

    def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
        # iou loss
        bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4])  # (b, h*w, 4)
        pred_bboxes_pos = torch.masked_select(pred_bboxes, bbox_mask).view(-1, 4)
        target_bboxes_pos = torch.masked_select(target_bboxes, bbox_mask).view(-1, 4)
        bbox_weight = torch.masked_select(target_scores.sum(-1), fg_mask).unsqueeze(-1)
        
        iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, CIoU=True)
        loss_iou = 1.0 - iou

        loss_iou *= bbox_weight
        loss_iou = loss_iou.sum() / target_scores_sum

        # dfl loss
        if self.use_dfl:
            dist_mask = fg_mask.unsqueeze(-1).repeat([1, 1, (self.reg_max + 1) * 4])
            pred_dist_pos = torch.masked_select(pred_dist, dist_mask).view(-1, 4, self.reg_max + 1)
            target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
            target_ltrb_pos = torch.masked_select(target_ltrb, bbox_mask).view(-1, 4)
            loss_dfl = self._df_loss(pred_dist_pos, target_ltrb_pos) * bbox_weight
            loss_dfl = loss_dfl.sum() / target_scores_sum
        else:
            loss_dfl = torch.tensor(0.0).to(pred_dist.device)

        return loss_iou, loss_dfl, iou

    def _df_loss(self, pred_dist, target):
        target_left = target.to(torch.long)
        target_right = target_left + 1
        weight_left = target_right.to(torch.float) - target
        weight_right = 1 - weight_left
        loss_left = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction="none").view(
            target_left.shape) * weight_left
        loss_right = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_right.view(-1),
                                     reduction="none").view(target_left.shape) * weight_right
        return (loss_left + loss_right).mean(-1, keepdim=True)


class ComputeLoss:
    # Compute losses
    def __init__(self, model, use_dfl=True, overlap=True):
        device = next(model.parameters()).device  # get model device
        h = model.hyp  # hyperparameters

        # Define criteria
        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')

        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0))  # positive, negative BCE targets

        # Focal loss
        g = h["fl_gamma"]  # focal loss gamma
        if g > 0:
            BCEcls = FocalLoss(BCEcls, g)

        m = de_parallel(model).model[-1]  # Detect() module
        self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
        self.BCEcls = BCEcls
        self.hyp = h
        self.stride = m.stride  # model strides
        self.nc = m.nc  # number of classes
        self.nl = m.nl  # number of layers
        self.no = m.no
        self.nm = m.nm
        self.overlap = overlap
        self.reg_max = m.reg_max
        self.device = device

        self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
                                            num_classes=self.nc,
                                            alpha=float(os.getenv('YOLOA', 0.5)),
                                            beta=float(os.getenv('YOLOB', 6.0)))
        self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
        self.proj = torch.arange(m.reg_max).float().to(device)  # / 120.0
        self.use_dfl = use_dfl

    def preprocess(self, targets, batch_size, scale_tensor):
        if targets.shape[0] == 0:
            out = torch.zeros(batch_size, 0, 5, device=self.device)
        else:
            i = targets[:, 0]  # image index
            _, counts = i.unique(return_counts=True)
            out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
            for j in range(batch_size):
                matches = i == j
                n = matches.sum()
                if n:
                    out[j, :n] = targets[matches, 1:]
            out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
        return out

    def bbox_decode(self, anchor_points, pred_dist):
        if self.use_dfl:
            b, a, c = pred_dist.shape  # batch, anchors, channels
            pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
        return dist2bbox(pred_dist, anchor_points, xywh=False)

    def __call__(self, p, targets, masks, img=None, epoch=0):
        loss = torch.zeros(4, device=self.device)  # box, cls, dfl
        feats, pred_masks, proto = p if len(p) == 3 else p[1]
        batch_size, _, mask_h, mask_w = proto.shape
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1)
        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()
        pred_masks = pred_masks.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        batch_size, grid_size = pred_scores.shape[:2]
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # targets
        try:
            batch_idx = targets[:, 0].view(-1, 1)
            targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
            gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
            mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
        except RuntimeError as e:
            raise TypeError('ERROR.') from e


        # pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)

        target_labels, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
            pred_scores.detach().sigmoid(),
            (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor,
            gt_labels,
            gt_bboxes,
            mask_gt)

        target_scores_sum = target_scores.sum()

        # cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[2] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        # bbox loss
        if fg_mask.sum():
            loss[0], loss[3], _ = self.bbox_loss(pred_distri, 
                                                  pred_bboxes, 
                                                  anchor_points, 
                                                  target_bboxes / stride_tensor,
                                                  target_scores, 
                                                  target_scores_sum, 
                                                  fg_mask)
            
            # masks loss
            if tuple(masks.shape[-2:]) != (mask_h, mask_w):  # downsample
                masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
                
            for i in range(batch_size):
                if fg_mask[i].sum():
                    mask_idx = target_gt_idx[i][fg_mask[i]]
                    if self.overlap:
                        gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
                    else:
                        gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
                    xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
                    marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
                    mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
                    loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy,
                                                     marea)  # seg loss

        loss[0] *= 7.5  # box gain
        loss[1] *= 2.5 / batch_size
        loss[2] *= 0.5  # cls gain
        loss[3] *= 1.5  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

    def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
        # Mask loss for one image
        pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:])  # (n, 32) @ (32,80,80) -> (n,80,80)
        loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
        #loss = sigmoid_focal_loss(pred_mask, gt_mask, alpha = .25, gamma = 2., reduction = 'none')
        
        return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
    
        #p_m = torch.flatten(pred_mask.sigmoid())
        #p_m = torch.flatten(pred_mask.softmax(dim = 1))
        #g_m = torch.flatten(gt_mask)
        #i_m = torch.sum(torch.mul(p_m, g_m))
        #u_m = torch.sum(torch.add(p_m, g_m))
        #d_c = (2. * i_m + 1.) / (u_m + 1.)
        #d_l = (1. - d_c)
        #return d_l