File size: 17,436 Bytes
8e0b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import os
import warnings
from pathlib import Path

import pkg_resources as pkg
import torch
from torch.utils.tensorboard import SummaryWriter

from utils.general import LOGGER, colorstr, cv2
from utils.loggers.clearml.clearml_utils import ClearmlLogger
from utils.loggers.wandb.wandb_utils import WandbLogger
from utils.plots import plot_images, plot_labels, plot_results
from utils.torch_utils import de_parallel

LOGGERS = ('csv', 'tb', 'wandb', 'clearml', 'comet')  # *.csv, TensorBoard, Weights & Biases, ClearML
RANK = int(os.getenv('RANK', -1))

try:
    import wandb

    assert hasattr(wandb, '__version__')  # verify package import not local dir
    if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}:
        try:
            wandb_login_success = wandb.login(timeout=30)
        except wandb.errors.UsageError:  # known non-TTY terminal issue
            wandb_login_success = False
        if not wandb_login_success:
            wandb = None
except (ImportError, AssertionError):
    wandb = None

try:
    import clearml

    assert hasattr(clearml, '__version__')  # verify package import not local dir
except (ImportError, AssertionError):
    clearml = None

try:
    if RANK not in [0, -1]:
        comet_ml = None
    else:
        import comet_ml

        assert hasattr(comet_ml, '__version__')  # verify package import not local dir
        from utils.loggers.comet import CometLogger

except (ModuleNotFoundError, ImportError, AssertionError):
    comet_ml = None


class Loggers():
    # YOLO Loggers class
    def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
        self.save_dir = save_dir
        self.weights = weights
        self.opt = opt
        self.hyp = hyp
        self.plots = not opt.noplots  # plot results
        self.logger = logger  # for printing results to console
        self.include = include
        self.keys = [
            'train/box_loss',
            'train/cls_loss',
            'train/dfl_loss',  # train loss
            'metrics/precision',
            'metrics/recall',
            'metrics/mAP_0.5',
            'metrics/mAP_0.5:0.95',  # metrics
            'val/box_loss',
            'val/cls_loss',
            'val/dfl_loss',  # val loss
            'x/lr0',
            'x/lr1',
            'x/lr2']  # params
        self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95']
        for k in LOGGERS:
            setattr(self, k, None)  # init empty logger dictionary
        self.csv = True  # always log to csv

        # Messages
        # if not wandb:
        #     prefix = colorstr('Weights & Biases: ')
        #     s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLO πŸš€ runs in Weights & Biases"
        #     self.logger.info(s)
        if not clearml:
            prefix = colorstr('ClearML: ')
            s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLO πŸš€ in ClearML"
            self.logger.info(s)
        if not comet_ml:
            prefix = colorstr('Comet: ')
            s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLO πŸš€ runs in Comet"
            self.logger.info(s)
        # TensorBoard
        s = self.save_dir
        if 'tb' in self.include and not self.opt.evolve:
            prefix = colorstr('TensorBoard: ')
            self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
            self.tb = SummaryWriter(str(s))

        # W&B
        if wandb and 'wandb' in self.include:
            wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
            run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
            self.opt.hyp = self.hyp  # add hyperparameters
            self.wandb = WandbLogger(self.opt, run_id)
            # temp warn. because nested artifacts not supported after 0.12.10
            # if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'):
            #    s = "YOLO temporarily requires wandb version 0.12.10 or below. Some features may not work as expected."
            #    self.logger.warning(s)
        else:
            self.wandb = None

        # ClearML
        if clearml and 'clearml' in self.include:
            self.clearml = ClearmlLogger(self.opt, self.hyp)
        else:
            self.clearml = None

        # Comet
        if comet_ml and 'comet' in self.include:
            if isinstance(self.opt.resume, str) and self.opt.resume.startswith("comet://"):
                run_id = self.opt.resume.split("/")[-1]
                self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id)

            else:
                self.comet_logger = CometLogger(self.opt, self.hyp)

        else:
            self.comet_logger = None

    @property
    def remote_dataset(self):
        # Get data_dict if custom dataset artifact link is provided
        data_dict = None
        if self.clearml:
            data_dict = self.clearml.data_dict
        if self.wandb:
            data_dict = self.wandb.data_dict
        if self.comet_logger:
            data_dict = self.comet_logger.data_dict

        return data_dict

    def on_train_start(self):
        if self.comet_logger:
            self.comet_logger.on_train_start()

    def on_pretrain_routine_start(self):
        if self.comet_logger:
            self.comet_logger.on_pretrain_routine_start()

    def on_pretrain_routine_end(self, labels, names):
        # Callback runs on pre-train routine end
        if self.plots:
            plot_labels(labels, names, self.save_dir)
            paths = self.save_dir.glob('*labels*.jpg')  # training labels
            if self.wandb:
                self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
            # if self.clearml:
            #    pass  # ClearML saves these images automatically using hooks
            if self.comet_logger:
                self.comet_logger.on_pretrain_routine_end(paths)

    def on_train_batch_end(self, model, ni, imgs, targets, paths, vals):
        log_dict = dict(zip(self.keys[0:3], vals))
        # Callback runs on train batch end
        # ni: number integrated batches (since train start)
        if self.plots:
            if ni < 3:
                f = self.save_dir / f'train_batch{ni}.jpg'  # filename
                plot_images(imgs, targets, paths, f)
                if ni == 0 and self.tb and not self.opt.sync_bn:
                    log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz))
            if ni == 10 and (self.wandb or self.clearml):
                files = sorted(self.save_dir.glob('train*.jpg'))
                if self.wandb:
                    self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
                if self.clearml:
                    self.clearml.log_debug_samples(files, title='Mosaics')

        if self.comet_logger:
            self.comet_logger.on_train_batch_end(log_dict, step=ni)

    def on_train_epoch_end(self, epoch):
        # Callback runs on train epoch end
        if self.wandb:
            self.wandb.current_epoch = epoch + 1

        if self.comet_logger:
            self.comet_logger.on_train_epoch_end(epoch)

    def on_val_start(self):
        if self.comet_logger:
            self.comet_logger.on_val_start()

    def on_val_image_end(self, pred, predn, path, names, im):
        # Callback runs on val image end
        if self.wandb:
            self.wandb.val_one_image(pred, predn, path, names, im)
        if self.clearml:
            self.clearml.log_image_with_boxes(path, pred, names, im)

    def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out):
        if self.comet_logger:
            self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out)

    def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
        # Callback runs on val end
        if self.wandb or self.clearml:
            files = sorted(self.save_dir.glob('val*.jpg'))
            if self.wandb:
                self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
            if self.clearml:
                self.clearml.log_debug_samples(files, title='Validation')

        if self.comet_logger:
            self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)

    def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
        # Callback runs at the end of each fit (train+val) epoch
        x = dict(zip(self.keys, vals))
        if self.csv:
            file = self.save_dir / 'results.csv'
            n = len(x) + 1  # number of cols
            s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n')  # add header
            with open(file, 'a') as f:
                f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')

        if self.tb:
            for k, v in x.items():
                self.tb.add_scalar(k, v, epoch)
        elif self.clearml:  # log to ClearML if TensorBoard not used
            for k, v in x.items():
                title, series = k.split('/')
                self.clearml.task.get_logger().report_scalar(title, series, v, epoch)

        if self.wandb:
            if best_fitness == fi:
                best_results = [epoch] + vals[3:7]
                for i, name in enumerate(self.best_keys):
                    self.wandb.wandb_run.summary[name] = best_results[i]  # log best results in the summary
            self.wandb.log(x)
            self.wandb.end_epoch(best_result=best_fitness == fi)

        if self.clearml:
            self.clearml.current_epoch_logged_images = set()  # reset epoch image limit
            self.clearml.current_epoch += 1

        if self.comet_logger:
            self.comet_logger.on_fit_epoch_end(x, epoch=epoch)

    def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
        # Callback runs on model save event
        if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1:
            if self.wandb:
                self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
            if self.clearml:
                self.clearml.task.update_output_model(model_path=str(last),
                                                      model_name='Latest Model',
                                                      auto_delete_file=False)

        if self.comet_logger:
            self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi)

    def on_train_end(self, last, best, epoch, results):
        # Callback runs on training end, i.e. saving best model
        if self.plots:
            plot_results(file=self.save_dir / 'results.csv')  # save results.png
        files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
        files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()]  # filter
        self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")

        if self.tb and not self.clearml:  # These images are already captured by ClearML by now, we don't want doubles
            for f in files:
                self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')

        if self.wandb:
            self.wandb.log(dict(zip(self.keys[3:10], results)))
            self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
            # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
            if not self.opt.evolve:
                wandb.log_artifact(str(best if best.exists() else last),
                                   type='model',
                                   name=f'run_{self.wandb.wandb_run.id}_model',
                                   aliases=['latest', 'best', 'stripped'])
            self.wandb.finish_run()

        if self.clearml and not self.opt.evolve:
            self.clearml.task.update_output_model(model_path=str(best if best.exists() else last),
                                                  name='Best Model',
                                                  auto_delete_file=False)

        if self.comet_logger:
            final_results = dict(zip(self.keys[3:10], results))
            self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results)

    def on_params_update(self, params: dict):
        # Update hyperparams or configs of the experiment
        if self.wandb:
            self.wandb.wandb_run.config.update(params, allow_val_change=True)
        if self.comet_logger:
            self.comet_logger.on_params_update(params)


class GenericLogger:
    """

    YOLO General purpose logger for non-task specific logging

    Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...)

    Arguments

        opt:             Run arguments

        console_logger:  Console logger

        include:         loggers to include

    """

    def __init__(self, opt, console_logger, include=('tb', 'wandb')):
        # init default loggers
        self.save_dir = Path(opt.save_dir)
        self.include = include
        self.console_logger = console_logger
        self.csv = self.save_dir / 'results.csv'  # CSV logger
        if 'tb' in self.include:
            prefix = colorstr('TensorBoard: ')
            self.console_logger.info(
                f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/")
            self.tb = SummaryWriter(str(self.save_dir))

        if wandb and 'wandb' in self.include:
            self.wandb = wandb.init(project=web_project_name(str(opt.project)),
                                    name=None if opt.name == "exp" else opt.name,
                                    config=opt)
        else:
            self.wandb = None

    def log_metrics(self, metrics, epoch):
        # Log metrics dictionary to all loggers
        if self.csv:
            keys, vals = list(metrics.keys()), list(metrics.values())
            n = len(metrics) + 1  # number of cols
            s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n')  # header
            with open(self.csv, 'a') as f:
                f.write(s + ('%23.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')

        if self.tb:
            for k, v in metrics.items():
                self.tb.add_scalar(k, v, epoch)

        if self.wandb:
            self.wandb.log(metrics, step=epoch)

    def log_images(self, files, name='Images', epoch=0):
        # Log images to all loggers
        files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])]  # to Path
        files = [f for f in files if f.exists()]  # filter by exists

        if self.tb:
            for f in files:
                self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')

        if self.wandb:
            self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)

    def log_graph(self, model, imgsz=(640, 640)):
        # Log model graph to all loggers
        if self.tb:
            log_tensorboard_graph(self.tb, model, imgsz)

    def log_model(self, model_path, epoch=0, metadata={}):
        # Log model to all loggers
        if self.wandb:
            art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata)
            art.add_file(str(model_path))
            wandb.log_artifact(art)

    def update_params(self, params):
        # Update the paramters logged
        if self.wandb:
            wandb.run.config.update(params, allow_val_change=True)


def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
    # Log model graph to TensorBoard
    try:
        p = next(model.parameters())  # for device, type
        imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz  # expand
        im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p)  # input image (WARNING: must be zeros, not empty)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress jit trace warning
            tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), [])
    except Exception as e:
        LOGGER.warning(f'WARNING ⚠️ TensorBoard graph visualization failure {e}')


def web_project_name(project):
    # Convert local project name to web project name
    if not project.startswith('runs/train'):
        return project
    suffix = '-Classify' if project.endswith('-cls') else '-Segment' if project.endswith('-seg') else ''
    return f'YOLO{suffix}'