File size: 3,599 Bytes
8e0b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from dataclasses import dataclass
from typing import Optional

import torch
import torch.nn as nn
from einops import rearrange

from x3D_utils import BaseModule


class TriplaneUpsampleNetwork(BaseModule):
    @dataclass
    class Config(BaseModule.Config):
        in_channels: int
        out_channels: int

    cfg: Config

    def configure(self) -> None:
        self.upsample = nn.ConvTranspose2d(
            self.cfg.in_channels, self.cfg.out_channels, kernel_size=2, stride=2
        )

    def forward(self, triplanes: torch.Tensor) -> torch.Tensor:
        triplanes_up = rearrange(
            self.upsample(
                rearrange(triplanes, "B Np Ci Hp Wp -> (B Np) Ci Hp Wp", Np=3)
            ),
            "(B Np) Co Hp Wp -> B Np Co Hp Wp",
            Np=3,
        )
        return triplanes_up


class NeRFMLP(BaseModule):
    @dataclass
    class Config(BaseModule.Config):
        in_channels: int
        n_neurons: int
        n_hidden_layers: int
        activation: str = "relu"
        bias: bool = True
        weight_init: Optional[str] = "kaiming_uniform"
        bias_init: Optional[str] = None

    cfg: Config

    def configure(self) -> None:
        layers = [
            self.make_linear(
                self.cfg.in_channels,
                self.cfg.n_neurons,
                bias=self.cfg.bias,
                weight_init=self.cfg.weight_init,
                bias_init=self.cfg.bias_init,
            ),
            self.make_activation(self.cfg.activation),
        ]
        for i in range(self.cfg.n_hidden_layers - 1):
            layers += [
                self.make_linear(
                    self.cfg.n_neurons,
                    self.cfg.n_neurons,
                    bias=self.cfg.bias,
                    weight_init=self.cfg.weight_init,
                    bias_init=self.cfg.bias_init,
                ),
                self.make_activation(self.cfg.activation),
            ]
        layers += [
            self.make_linear(
                self.cfg.n_neurons,
                4,  # density 1 + features 3
                bias=self.cfg.bias,
                weight_init=self.cfg.weight_init,
                bias_init=self.cfg.bias_init,
            )
        ]
        self.layers = nn.Sequential(*layers)

    def make_linear(

        self,

        dim_in,

        dim_out,

        bias=True,

        weight_init=None,

        bias_init=None,

    ):
        layer = nn.Linear(dim_in, dim_out, bias=bias)

        if weight_init is None:
            pass
        elif weight_init == "kaiming_uniform":
            torch.nn.init.kaiming_uniform_(layer.weight, nonlinearity="relu")
        else:
            raise NotImplementedError

        if bias:
            if bias_init is None:
                pass
            elif bias_init == "zero":
                torch.nn.init.zeros_(layer.bias)
            else:
                raise NotImplementedError

        return layer

    def make_activation(self, activation):
        if activation == "relu":
            return nn.ReLU(inplace=True)
        elif activation == "silu":
            return nn.SiLU(inplace=True)
        else:
            raise NotImplementedError

    def forward(self, x):
        inp_shape = x.shape[:-1]
        x = x.reshape(-1, x.shape[-1])

        features = self.layers(x)
        features = features.reshape(*inp_shape, -1)
        out = {"density": features[..., 0:1], "features": features[..., 1:4]}

        return out