File size: 12,447 Bytes
c6e5236 3b71808 c6e5236 1ab8a9c c6e5236 7f3670b c6e5236 a09734b 7f3670b a09734b c6e5236 b3868fd c6e5236 b3868fd c6e5236 c710c88 02f1b5e c710c88 c6e5236 682c36d c6e5236 682c36d c6e5236 213363a 77320f3 682c36d 02c3d77 682c36d 213363a 682c36d 32a7a7e 682c36d 32a7a7e 682c36d c6e5236 68727ff c6e5236 682c36d c6e5236 682c36d c6e5236 682c36d c6e5236 1ab8a9c c6e5236 7f3670b c7de217 7f3670b c7de217 7f3670b 77320f3 c7de217 7f3670b 77320f3 c7de217 7f3670b c6e5236 a09734b c6e5236 8de4963 c6e5236 a09734b c6e5236 a09734b c6e5236 a09734b c6e5236 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import os
import streamlit as st
import streamlit.components.v1 as components
import openai
from llama_index.llms.openai import OpenAI
import os
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, StorageContext, PropertyGraphIndex
from llama_index.core.indices.property_graph import (
ImplicitPathExtractor,
SimpleLLMPathExtractor,
)
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.core.retrievers import BaseRetriever
from llama_index.core.node_parser import SentenceSplitter
from llama_index.embeddings.openai import OpenAIEmbedding
# from llama_index.llms.mistralai import MistralAI
from llmlingua import PromptCompressor
from rouge_score import rouge_scorer
from semantic_text_similarity.models import WebBertSimilarity
import nest_asyncio
# Apply nest_asyncio
nest_asyncio.apply()
# OpenAI credentials
key = os.getenv('OPENAI_API_KEY')
openai.api_key = key
os.environ["OPENAI_API_KEY"] = key
# key = os.getenv('MISTRAL_API_KEY')
# os.environ["MISTRAL_API_KEY"] = key
# Anthropic credentials
# key = os.getenv('CLAUDE_API_KEY')
# os.environ["ANTHROPIC_API_KEY"] = key
# Streamlit UI
st.title("Prompt Optimization for a Policy Bot")
uploaded_files = st.file_uploader("Upload a Policy document in pdf format", type="pdf", accept_multiple_files=True)
if uploaded_files:
for uploaded_file in uploaded_files:
with open(f"./data/{uploaded_file.name}", 'wb') as f:
f.write(uploaded_file.getbuffer())
reader = SimpleDirectoryReader(input_files=[f"./data/{uploaded_file.name}"])
documents = reader.load_data()
st.success("File uploaded...")
# # Indexing
# index = PropertyGraphIndex.from_documents(
# documents,
# embed_model=OpenAIEmbedding(model_name="text-embedding-3-small"),
# kg_extractors=[
# ImplicitPathExtractor(),
# SimpleLLMPathExtractor(
# llm=OpenAI(model="gpt-3.5-turbo", temperature=0.3),
# num_workers=4,
# max_paths_per_chunk=10,
# ),
# ],
# show_progress=True,
# )
# # Save Knowlege Graph
# index.property_graph_store.save_networkx_graph(name="./data/kg.html")
# # Display the graph in Streamlit
# st.success("File Processed...")
# st.success("Creating Knowledge Graph...")
# HtmlFile = open("./data/kg.html", 'r', encoding='utf-8')
# source_code = HtmlFile.read()
# components.html(source_code, height= 500, width=700)
# # Retrieval
# kg_retriever = index.as_retriever(
# include_text=True, # include source text, default True
# )
# Indexing
splitter = SentenceSplitter(chunk_size=256)
nodes = splitter.get_nodes_from_documents(documents)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
index = VectorStoreIndex(nodes=nodes, storage_context=storage_context)
# Retrieval
bm25_retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=1)
vector_retriever = index.as_retriever(similarity_top_k=1)
# Hybrid Retriever class
class HybridRetriever(BaseRetriever):
def __init__(self, vector_retriever, bm25_retriever):
self.vector_retriever = vector_retriever
self.bm25_retriever = bm25_retriever
super().__init__()
# def _retrieve(self, query, **kwargs):
# bm25_nodes = self.bm25_retriever.retrieve(query, **kwargs)
# vector_nodes = self.vector_retriever.retrieve(query, **kwargs)
# all_nodes = []
# node_ids = set()
# for n in bm25_nodes + vector_nodes:
# if n.node.node_id not in node_ids:
# all_nodes.append(n)
# node_ids.add(n.node.node_id)
# return all_nodes
def _retrieve(self, query, **kwargs):
# bm25_nodes = self.bm25_retriever.retrieve(query, **kwargs)
vector_nodes = self.vector_retriever.retrieve(query, **kwargs)
all_nodes = []
node_ids = set()
for n in vector_nodes:
if n.node.node_id not in node_ids:
all_nodes.append(n)
node_ids.add(n.node.node_id)
return all_nodes
hybrid_retriever = HybridRetriever(vector_retriever, bm25_retriever)
# Generation
model = "gpt-3.5-turbo"
# model = "claude-3-opus-20240229"
# def get_context(query):
# contexts = kg_retriever.retrieve(query)
# context_list = [n.text for n in contexts]
# return context_list
def get_context(query):
contexts = hybrid_retriever.retrieve(query)
context_list = [n.get_content() for n in contexts]
return context_list
def res(prompt):
response = openai.chat.completions.create(
model=model,
messages=[
{"role":"system",
"content":"You are a helpful assistant who answers from the following context. If the answer can't be found in context, politely refuse"
},
{"role": "user",
"content": prompt,
}
]
)
return [response.usage.prompt_tokens, response.usage.completion_tokens, response.usage.total_tokens, response.choices[0].message.content]
# Summary
def summary(prompt, temp):
response = openai.chat.completions.create(
model=model,
temperature=temp,
messages=[
{"role":"system",
"content":"Summarize the following context:"
},
{"role": "user",
"content": prompt,
}
]
)
return response.choices[0].message.content
full_prompt = documents[0].text
st.success("Input text")
st.markdown(full_prompt)
st.success("Reference summary")
gen_summ = summary(full_prompt, temp = 0.6)
st.markdown(gen_summ)
st.success("Generated summary")
ref_summ = summary(full_prompt, temp = 0.8)
st.markdown(ref_summ)
# Initialize session state for token summary, evaluation details, and chat messages
if "token_summary" not in st.session_state:
st.session_state.token_summary = []
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("Enter your query:"):
st.success("Fetching info...")
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Generate response
# st.success("Fetching info...")
context_list = get_context(prompt)
context = " ".join(context_list)
st.success("Getting context")
st.markdown(context)
# # Summarize
# full_prompt = "\n\n".join([context + prompt])
# orig_res = res(full_prompt)
# Original prompt response
full_prompt = "\n\n".join([context + prompt])
orig_res = res(full_prompt)
st.session_state.messages.append({"role": "assistant", "content": "Generating Original prompt response..."})
st.session_state.messages.append({"role": "assistant", "content": orig_res[3]})
st.success("Generating Original prompt response...")
with st.chat_message("assistant"):
st.markdown(orig_res[3])
# # Compressed Response
# st.session_state.messages.append({"role": "assistant", "content": "Generating Optimized prompt response..."})
# st.success("Generating Optimized prompt response...")
# llm_lingua = PromptCompressor(
# model_name="microsoft/llmlingua-2-xlm-roberta-large-meetingbank",
# use_llmlingua2=True, device_map="cpu"
# )
# def prompt_compression(context, rate=0.5):
# compressed_context = llm_lingua.compress_prompt(
# context,
# rate=rate,
# force_tokens=["!", ".", "?", "\n"],
# drop_consecutive=True,
# )
# return compressed_context
# compressed_context = prompt_compression(context)
# full_opt_prompt = "\n\n".join([compressed_context['compressed_prompt'] + prompt])
# compressed_res = res(full_opt_prompt)
# st.session_state.messages.append({"role": "assistant", "content": compressed_res[3]})
# with st.chat_message("assistant"):
# st.markdown(compressed_res[3])
# # Save token summary and evaluation details to session state
# scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
# scores = scorer.score(compressed_res[3],orig_res[3])
# webert_model = WebBertSimilarity(device='cpu')
# similarity_score = webert_model.predict([(compressed_res[3], orig_res[3])])[0] / 5 * 100
# # Display token summary
# st.session_state.messages.append({"role": "assistant", "content": "Token Length Summary..."})
# st.success('Token Length Summary...')
# st.session_state.messages.append({"role": "assistant", "content": f"Original Prompt has {orig_res[0]} tokens"})
# st.write(f"Original Prompt has {orig_res[0]} tokens")
# st.session_state.messages.append({"role": "assistant", "content": f"Optimized Prompt has {compressed_res[0]} tokens"})
# st.write(f"Optimized Prompt has {compressed_res[0]} tokens")
# st.session_state.messages.append({"role": "assistant", "content": "Comparing Original and Optimized Prompt Response..."})
# st.success("Comparing Original and Optimized Prompt Response...")
# st.session_state.messages.append({"role": "assistant", "content": f"Rouge Score : {scores['rougeL'].fmeasure * 100}"})
# st.write(f"Rouge Score : {scores['rougeL'].fmeasure * 100}")
# st.session_state.messages.append({"role": "assistant", "content": f"Semantic Text Similarity Score : {similarity_score}"})
# st.write(f"Semantic Text Similarity Score : {similarity_score}")
# st.write(" ")
# # origin_tokens = compressed_context['origin_tokens']
# # compressed_tokens = compressed_context['compressed_tokens']
# origin_tokens = orig_res[0]
# compressed_tokens = compressed_res[0]
# gpt_saving = (origin_tokens - compressed_tokens) * 0.06 / 1000
# claude_saving = (origin_tokens - compressed_tokens) * 0.015 / 1000
# mistral_saving = (origin_tokens - compressed_tokens) * 0.004 / 1000
# # st.session_state.messages.append({"role": "assistant", "content": f"""The optimized prompt has saved ${gpt_saving:.4f} in GPT4, ${mistral_saving:.4f} in Mistral"""})
# # st.success(f"""The optimized prompt has saved ${gpt_saving:.4f} in GPT4, ${mistral_saving:.4f} in Mistral""")
# st.session_state.messages.append({"role": "assistant", "content": f"The optimized prompt has ${gpt_saving:.4f} saved in GPT-4."})
# st.success(f"The optimized prompt has ${gpt_saving:.4f} saved in GPT-4.")
# st.success("Downloading Optimized Prompt...")
# st.download_button(label = "Download Optimized Prompt",
# data = full_opt_prompt, file_name='./data/optimized_prompt.txt')
|