File size: 18,982 Bytes
030c383 f9f658f e03b6bc f9f658f 030c383 f9f658f 030c383 6ce32c9 030c383 23eebd4 cdaae41 030c383 6ce32c9 030c383 d79c165 030c383 d79c165 030c383 6ce32c9 030c383 6ce32c9 030c383 d79c165 030c383 6ce32c9 030c383 d79c165 030c383 df7b883 030c383 df7b883 d79c165 030c383 7041172 030c383 7041172 030c383 7041172 030c383 6ce32c9 030c383 d79c165 030c383 d79c165 030c383 cdaae41 c03f934 cdaae41 c03f934 cdaae41 030c383 f3e2207 030c383 cdaae41 030c383 cdaae41 030c383 23eebd4 3ccba73 23eebd4 972fe73 3ccba73 972fe73 030c383 ac07b1b c03f934 030c383 a76c9f4 972fe73 a9b2233 cdaae41 030c383 a9b2233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
import pandas as pd
import numpy as np
import datetime
import tqdm
import gradio as gr
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import snscrape.modules.twitter as sntwitter
matplotlib.use("Agg")
css = """
footer {display:none !important}
.max-h-\[30rem\] {max-height: 15rem !important;}
.min-h-\[15rem\] {max-height: 5rem !important;}
.hover\:bg-orange-50:hover {
--tw-bg-opacity: 1 !important;
background-color: rgb(229,225,255) !important;
}
"""
with gr.Blocks(title="Twitter Temporal Insights | Data Science Dojo", css = css) as demo:
def search(text,username,since,until,retweet,replies):
global filename
q = text
if username!='':
q += f" from:{username}"
if until=='':
until = datetime.datetime.strftime(datetime.date.today(), '%Y-%m-%d')
q += f" until:{until}"
if since=='':
since = datetime.datetime.strftime(datetime.datetime.strptime(until, '%Y-%m-%d') - datetime.timedelta(days=7), '%Y-%m-%d')
q += f" since:{since}"
if retweet == True:
q += f" exclude:retweets"
if replies == True:
q += f" exclude:replies"
if username!='' and text!='':
filename = f"{since}_{until}_{username}_{text}.csv"
elif username!="":
filename = f"{since}_{until}_{username}.csv"
else:
filename = f"{since}_{until}_{text}.csv"
print(filename)
return q,filename
def file_viz(dataset):
tweets_df1 = pd.read_csv(dataset.name)
since= str(min(tweets_df1['Year']))
until = str(max(tweets_df1['Year']))
print(dataset.name)
f, ax = plt.subplots()
sns.countplot(x= tweets_df1['Year'])
for p in ax.patches:
ax.annotate(int(p.get_height()), (p.get_x()+0.05, p.get_height()+5), fontsize = 12)
f2,ax2 = plt.subplots()
sns.lineplot(x=tweets_df1.Year.value_counts().index,y=tweets_df1.Year.value_counts().values)
ax2.set_xlabel("Year")
ax2.set_ylabel('Count')
ax2.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
#f2 = plt.figure()
#plt.plot(np.arange(2021,2023,1), tweets_df1.Year.value_counts())
f3,ax3 = plt.subplots()
sns.histplot(x=tweets_df1.Year,stat='count',binwidth=1,kde='true',discrete=True)
ax3.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f4,ax4 = plt.subplots()
sns.kdeplot(x=tweets_df1.Year,fill=True)
ax4.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f5,ax5 = plt.subplots()
sns.kdeplot(x=tweets_df1.Year,fill=True,bw_adjust=3)
ax5.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f6, ax6 = plt.subplots()
sns.countplot(x= tweets_df1['Month'])
for p in ax6.patches:
ax6.annotate(int(p.get_height()), (p.get_x()+0.05, p.get_height()+5), fontsize = 12)
f7,ax7 = plt.subplots()
sns.lineplot(x=tweets_df1.Month.value_counts().index,y=tweets_df1.Month.value_counts().values)
ax7.set_xlabel("Month")
ax7.set_ylabel('Count')
ax7.set_xticks(np.arange(1,13,1))
#f2 = plt.figure()
#plt.plot(np.arange(2021,2023,1), tweets_df1.Year.value_counts())
f8,ax8 = plt.subplots()
sns.histplot(x=tweets_df1.Month,stat='count',binwidth=1,kde='true',discrete=True)
ax8.set_xticks(np.arange(1,13,1))
f9,ax9 = plt.subplots()
sns.kdeplot(x=tweets_df1.Month,fill=True)
ax9.set_xticks(np.arange(1,13,1))
f10,ax10 = plt.subplots()
sns.kdeplot(x=tweets_df1.Month,fill=True,bw_adjust=3)
ax10.set_xticks(np.arange(1,13,1))
f11, ax11 = plt.subplots()
sns.countplot(x= tweets_df1['Week'])
for p in ax11.patches:
ax11.annotate(int(p.get_height()), (p.get_x()+0.005, p.get_height()+1), fontsize = 10)
plt.xticks(fontsize=7, rotation=45,horizontalalignment = 'center')
#plt.setp(ax11.get_xticklabels(), rotation=30)
f12,ax12 = plt.subplots()
sns.lineplot(x=tweets_df1.Week.value_counts().index,y=tweets_df1.Week.value_counts().values)
ax12.set_xlabel("Week")
ax12.set_ylabel('Count')
#ax12.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
#f2 = plt.figure()
#plt.plot(np.arange(2021,2023,1), tweets_df1.Year.value_counts())
f13,ax13 = plt.subplots()
sns.histplot(x=tweets_df1.Week,stat='count',binwidth=1,kde='true',discrete=True)
#ax13.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f14,ax14 = plt.subplots()
sns.kdeplot(x=tweets_df1.Week,fill=True)
#ax14.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f15,ax15 = plt.subplots()
sns.kdeplot(x=tweets_df1.Week,fill=True,bw_adjust=3)
#ax15.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f16, ax16 = plt.subplots()
sns.countplot(x= tweets_df1['MonthDay'])
for p in ax16.patches:
ax16.annotate(int(p.get_height()), (p.get_x()+0.05, p.get_height()+5), fontsize = 12)
plt.xticks(fontsize=10, rotation=45,horizontalalignment = 'center')
f17,ax17 = plt.subplots()
sns.lineplot(x=tweets_df1.MonthDay.value_counts().index,y=tweets_df1.MonthDay.value_counts().values)
ax17.set_xlabel("MonthDay")
ax17.set_ylabel('Count')
#ax17.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
#f2 = plt.figure()
#plt.plot(np.arange(2021,2023,1), tweets_df1.Year.value_counts())
f18,ax18 = plt.subplots()
sns.histplot(x=tweets_df1.MonthDay,stat='count',binwidth=1,kde='true',discrete=True)
#ax18.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f19,ax19 = plt.subplots()
sns.kdeplot(x=tweets_df1.MonthDay,fill=True)
#ax19.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f20,ax20 = plt.subplots()
sns.kdeplot(x=tweets_df1.MonthDay,fill=True,bw_adjust=3)
#ax20.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f21, ax21 = plt.subplots()
sns.countplot(x= tweets_df1['Hour'])
for p in ax21.patches:
ax21.annotate(int(p.get_height()), (p.get_x()+0.05, p.get_height()+10), fontsize = 12)
f22,ax22 = plt.subplots()
sns.lineplot(x=tweets_df1.Hour.value_counts().index,y=tweets_df1.Hour.value_counts().values)
ax22.set_xlabel("Hour")
ax22.set_ylabel('Count')
#ax22.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
#f2 = plt.figure()
#plt.plot(np.arange(2021,2023,1), tweets_df1.Year.value_counts())
f23,ax23 = plt.subplots()
sns.histplot(x=tweets_df1.Hour,stat='count',binwidth=1,kde='true',discrete=True)
#ax23.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f24,ax24 = plt.subplots()
sns.kdeplot(x=tweets_df1.Hour,fill=True)
#ax4.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f25,ax25 = plt.subplots()
sns.kdeplot(x=tweets_df1.Hour,fill=True,bw_adjust=3)
#ax5.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
tweets_df1.to_csv(dataset.name,index=False)
return [dataset.name,f,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f22,f23,f24,f25]
def scrape_tweets(text,username,since,until,retweets,replies,count,progress=gr.Progress()):
print(text,username,since,until,retweets,replies,count)
q,filename = search(text,username,since,until,retweets,replies)
# Creating list to append tweet data
tweets_list1 = []
# Using TwitterSearchScraper to scrape data and append tweets to list
if count == -1:
for i,tweet in progress.tqdm(enumerate(sntwitter.TwitterSearchScraper(q).get_items())):
tweets_list1.append([tweet.date, tweet.id, tweet.rawContent, tweet.user.username,tweet.lang,tweet.hashtags,tweet.replyCount,tweet.retweetCount,tweet.likeCount,tweet.quoteCount,tweet.media])
else:
for i,tweet in progress.tqdm(enumerate(sntwitter.TwitterSearchScraper(q).get_items())):
if i>=count: #number of tweets you want to scrape
break
tweets_list1.append([tweet.date, tweet.id, tweet.rawContent, tweet.user.username,tweet.lang,tweet.hashtags,tweet.replyCount,tweet.retweetCount,tweet.likeCount,tweet.quoteCount,tweet.media])
# pbar.update(1)
# Creating a dataframe from the tweets list above
tweets_df1 = pd.DataFrame(tweets_list1, columns=['DateTime', 'TweetId', 'Text', 'Username','Language',
'Hashtags','ReplyCount','RetweetCount','LikeCount','QuoteCount','Media'])
#print(tweets_df1)
tweets_df1['Hour'] = tweets_df1['DateTime'].dt.hour
tweets_df1['Year'] = tweets_df1['DateTime'].dt.year
tweets_df1['Month'] = tweets_df1['DateTime'].dt.month
tweets_df1['MonthName'] = tweets_df1['DateTime'].dt.month_name()
tweets_df1['MonthDay'] = tweets_df1['DateTime'].dt.day
tweets_df1['DayName'] = tweets_df1['DateTime'].dt.day_name()
tweets_df1['Week'] = tweets_df1['DateTime'].dt.isocalendar().week
tweets_df1['Date'] = [d.date() for d in tweets_df1['DateTime']]
tweets_df1['Time'] = [d.time() for d in tweets_df1['DateTime']]
tweets_df1.drop('DateTime',axis=1,inplace=True)
tweets_df1.drop('Media',axis=1,inplace=True)
tweets_df1=tweets_df1.reindex(columns=['Date','Time','Username','Text','Language','Hashtags','ReplyCount','RetweetCount','LikeCount','QuoteCount','Hour','Year','Month','MonthName','MonthDay','DayName','Week','TweetId'])
tweets_df1.to_csv(f"{filename}",index=False)
'''fig,ax = plt.subplots()
plt.plot(df["day"], df[countries].to_numpy())
#plt.title("Outbreak in " + month)
#plt.ylabel("Cases")
#plt.xlabel("Days since Day 0")
#plt.legend(countries)
return fig'''
f, ax = plt.subplots()
sns.countplot(x= tweets_df1['Year'])
for p in ax.patches:
ax.annotate(int(p.get_height()), (p.get_x()+0.05, p.get_height()+5), fontsize = 12)
f2,ax2 = plt.subplots()
sns.lineplot(x=tweets_df1.Year.value_counts().index,y=tweets_df1.Year.value_counts().values)
ax2.set_xlabel("Year")
ax2.set_ylabel('Count')
ax2.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
#f2 = plt.figure()
#plt.plot(np.arange(2021,2023,1), tweets_df1.Year.value_counts())
f3,ax3 = plt.subplots()
sns.histplot(x=tweets_df1.Year,stat='count',binwidth=1,kde='true',discrete=True)
ax3.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f4,ax4 = plt.subplots()
sns.kdeplot(x=tweets_df1.Year,fill=True)
ax4.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f5,ax5 = plt.subplots()
sns.kdeplot(x=tweets_df1.Year,fill=True,bw_adjust=3)
ax5.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f6, ax6 = plt.subplots()
sns.countplot(x= tweets_df1['Month'])
for p in ax6.patches:
ax6.annotate(int(p.get_height()), (p.get_x()+0.05, p.get_height()+5), fontsize = 12)
f7,ax7 = plt.subplots()
sns.lineplot(x=tweets_df1.Month.value_counts().index,y=tweets_df1.Month.value_counts().values)
ax7.set_xlabel("Month")
ax7.set_ylabel('Count')
ax7.set_xticks(np.arange(1,13,1))
#f2 = plt.figure()
#plt.plot(np.arange(2021,2023,1), tweets_df1.Year.value_counts())
f8,ax8 = plt.subplots()
sns.histplot(x=tweets_df1.Month,stat='count',binwidth=1,kde='true',discrete=True)
ax8.set_xticks(np.arange(1,13,1))
f9,ax9 = plt.subplots()
sns.kdeplot(x=tweets_df1.Month,fill=True)
ax9.set_xticks(np.arange(1,13,1))
f10,ax10 = plt.subplots()
sns.kdeplot(x=tweets_df1.Month,fill=True,bw_adjust=3)
ax10.set_xticks(np.arange(1,13,1))
f11, ax11 = plt.subplots()
sns.countplot(x= tweets_df1['Week'])
for p in ax11.patches:
ax11.annotate(int(p.get_height()), (p.get_x()+0.005, p.get_height()+1), fontsize = 10)
plt.xticks(fontsize=7, rotation=45,horizontalalignment = 'center')
#plt.setp(ax11.get_xticklabels(), rotation=30)
f12,ax12 = plt.subplots()
sns.lineplot(x=tweets_df1.Week.value_counts().index,y=tweets_df1.Week.value_counts().values)
ax12.set_xlabel("Week")
ax12.set_ylabel('Count')
#ax12.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
#f2 = plt.figure()
#plt.plot(np.arange(2021,2023,1), tweets_df1.Year.value_counts())
f13,ax13 = plt.subplots()
sns.histplot(x=tweets_df1.Week,stat='count',binwidth=1,kde='true',discrete=True)
#ax13.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f14,ax14 = plt.subplots()
sns.kdeplot(x=tweets_df1.Week,fill=True)
#ax14.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f15,ax15 = plt.subplots()
sns.kdeplot(x=tweets_df1.Week,fill=True,bw_adjust=3)
#ax15.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f16, ax16 = plt.subplots()
sns.countplot(x= tweets_df1['MonthDay'])
for p in ax16.patches:
ax16.annotate(int(p.get_height()), (p.get_x()+0.05, p.get_height()+5), fontsize = 12)
plt.xticks(fontsize=10, rotation=45,horizontalalignment = 'center')
f17,ax17 = plt.subplots()
sns.lineplot(x=tweets_df1.MonthDay.value_counts().index,y=tweets_df1.MonthDay.value_counts().values)
ax17.set_xlabel("MonthDay")
ax17.set_ylabel('Count')
#ax17.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
#f2 = plt.figure()
#plt.plot(np.arange(2021,2023,1), tweets_df1.Year.value_counts())
f18,ax18 = plt.subplots()
sns.histplot(x=tweets_df1.MonthDay,stat='count',binwidth=1,kde='true',discrete=True)
#ax18.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f19,ax19 = plt.subplots()
sns.kdeplot(x=tweets_df1.MonthDay,fill=True)
#ax19.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f20,ax20 = plt.subplots()
sns.kdeplot(x=tweets_df1.MonthDay,fill=True,bw_adjust=3)
#ax20.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f21, ax21 = plt.subplots()
sns.countplot(x= tweets_df1['Hour'])
for p in ax21.patches:
ax21.annotate(int(p.get_height()), (p.get_x()+0.05, p.get_height()+10), fontsize = 12)
f22,ax22 = plt.subplots()
sns.lineplot(x=tweets_df1.Hour.value_counts().index,y=tweets_df1.Hour.value_counts().values)
ax22.set_xlabel("Hour")
ax22.set_ylabel('Count')
#ax22.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
#f2 = plt.figure()
#plt.plot(np.arange(2021,2023,1), tweets_df1.Year.value_counts())
f23,ax23 = plt.subplots()
sns.histplot(x=tweets_df1.Hour,stat='count',binwidth=1,kde='true',discrete=True)
#ax23.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f24,ax24 = plt.subplots()
sns.kdeplot(x=tweets_df1.Hour,fill=True)
#ax4.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
f25,ax25 = plt.subplots()
sns.kdeplot(x=tweets_df1.Hour,fill=True,bw_adjust=3)
#ax5.set_xticks(np.arange(int(since[0:4]),int(until[0:4])+1,1))
#if dataframe==False:
#return [filename,gr.update(value = tweets_df1,visible=False),f,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f22,f23,f24,f25]
#return [filename,f,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f22,f23,f24,f25]
#else:
#return [filename,gr.update(value = tweets_df1,visible=True),f,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f22,f23,f24,f25]
return [filename,f,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f22,f23,f24,f25]
#gr.Markdown("Start typing below and then click **Run** to see the output.")
with gr.Tab("Input"):
with gr.Row():
text = gr.Textbox(label="Query text to be matched (Optional)",max_lines=1)
username = gr.Textbox(label="Twitter Username",max_lines=1,value = 'DataScienceDojo')
with gr.Row():
since = gr.Textbox(label="Start Date",placeholder='yyyy-mm-dd',max_lines=1,value = '2021-01-01')
until = gr.Textbox(label="End Date",max_lines=1,placeholder='yyyy-mm-dd',value = '2022-12-31')
with gr.Row():
retweets = gr.Checkbox(label="Exclude Retweets?",value = True)
replies = gr.Checkbox(label="Exclude Replies",value = True)
with gr.Row():
count = gr.Slider(label="Count (-1 to retrieve all tweets. Increase the count for better visualizations. 5000 Tweets are retrieved in approximately 100s!)",value=-1, minimum=-1,maximum = 100000, step=100)
#dataframe = gr.Checkbox(label="Show Dataframe? It is better to uncheck this option if a large number of tweets are retrieved!")
with gr.Row():
submit_btn = gr.Button("Submit")
with gr.Row():
gr.Markdown("""<h1 style= "text-align:center; z-index: 14; font-family: var(--font_default); font-size: 18px; font-weight: 500; color: rgb(9, 23, 71); opacity: 1;">OR Upload File<h1>""")
with gr.Row():
filein = gr.File(label = "Upload previously downloaded csv file. Example given below!")
with gr.Row():
submit_file = gr.Button("Submit File")
with gr.Row():
out0 = gr.File(label = "Download CSV of extracted tweets")
#with gr.Row():
#out = gr.DataFrame(label = "Scroll Horizontally to see all fields. Dataframe will display when the number of steps reaches a constant value.")
with gr.Tab("Visualization by Hour"):
with gr.Row():
out22 = gr.Plot()
out23 = gr.Plot()
with gr.Row():
out24 = gr.Plot()
out25 = gr.Plot()
with gr.Row():
out26 = gr.Plot()
with gr.Tab("Visualization by Day"):
with gr.Row():
out17 = gr.Plot()
out18 = gr.Plot()
with gr.Row():
out19 = gr.Plot()
out20 = gr.Plot()
with gr.Row():
out21 = gr.Plot()
with gr.Tab("Visualization by Week"):
with gr.Row():
out12 = gr.Plot()
out13 = gr.Plot()
with gr.Row():
out14 = gr.Plot()
out15 = gr.Plot()
with gr.Row():
out16 = gr.Plot()
with gr.Tab("Visualization by Month"):
with gr.Row():
out7 = gr.Plot()
out8 = gr.Plot()
with gr.Row():
out9 = gr.Plot()
out10 = gr.Plot()
with gr.Row():
out11 = gr.Plot()
with gr.Tab("Visualization by Year"):
with gr.Row():
out2 = gr.Plot()
out3 = gr.Plot()
with gr.Row():
out4 = gr.Plot()
out5 = gr.Plot()
with gr.Row():
out6 = gr.Plot()
gr.Examples(
examples=[["DSD_Tweets.csv"]],
fn = file_viz,
inputs = filein,
outputs=[out0,out2,out3,out4,out5,out6,out7,out8,out9,out10,out11,out12,out13,out14,out15,out16,out17,out18,out19,out20,out21,out22,out23,out24,out25,out26]
)
submit_file.click(fn=file_viz,inputs = filein, outputs=[out0,out2,out3,out4,out5,out6,out7,out8,out9,out10,out11,out12,out13,out14,out15,out16,out17,out18,out19,out20,out21,out22,out23,out24,out25,out26])
submit_btn.click(fn=scrape_tweets, inputs=[text,username,since,until,retweets,replies,count], outputs=[out0,out2,out3,out4,out5,out6,out7,out8,out9,out10,out11,out12,out13,out14,out15,out16,out17,out18,out19,out20,out21,out22,out23,out24,out25,out26])
demo.queue(concurrency_count=5).launch()
|