File size: 3,419 Bytes
0eba60f
 
 
 
030b429
 
0eba60f
 
 
 
 
871dafe
0eba60f
 
 
 
 
 
 
030b429
 
 
 
 
 
 
 
 
 
 
0eba60f
 
cc26dda
 
 
 
 
 
 
 
 
 
 
 
 
030b429
0eba60f
 
 
030b429
0eba60f
 
 
 
030b429
 
0eba60f
030b429
 
 
0eba60f
 
 
030b429
69af349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d069cb
 
 
 
cd8ac3f
 
 
 
69af349
0eba60f
 
cedbc67
0eba60f
 
cedbc67
69af349
0eba60f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import nltk
nltk.download('punkt')
from nltk.stem.lancaster import LancasterStemmer
import numpy as np
import tflearn
import tensorflow
import random
import json
import pandas as pd
import pickle
import gradio as gr
from tensorflow.python.util.nest import is_sequence_or_composite

stemmer = LancasterStemmer()

with open("intents.json") as file:
    data = json.load(file)

with open("data.pickle", "rb") as f:
  words, labels, training, output = pickle.load(f)

net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")
# print('model loaded successfully')


def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]

    s_words = nltk.word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words]

    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
            
    return np.array(bag)


def chat(message, history):
    history = history or []
    message = message.lower()
    results = model.predict([bag_of_words(message, words)])
    results_index = np.argmax(results)
    tag = labels[results_index]

    for tg in data["intents"]:
      if tg['tag'] == tag:
        responses = tg['responses']

        # print(random.choice(responses))
        response = random.choice(responses)
  
    history.append((message, response))
    return history, history

chatbot = gr.Chatbot(label="Chat")
css = """
footer {display:none !important}
.output-markdown{display:none !important}
.gr-button-primary {
    z-index: 14;
    height: 43px;
    width: 130px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important; 
    background: none rgb(17, 20, 45) !important;
    border: none !important;
    text-align: center !important;
    font-family: Poppins !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 12px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: none !important;
}
.gr-button-primary:hover{
    z-index: 14;
    height: 43px;
    width: 130px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important;
    background: none rgb(37, 56, 133) !important;
    border: none !important;
    text-align: center !important;
    font-family: Poppins !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 12px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
}
.hover\:bg-orange-50:hover {
    --tw-bg-opacity: 1 !important;
    background-color: rgb(229,225,255) !important;
}

div[data-testid="user"] {
  background-color: #253885 !important;
}

.h-\[40vh\]{
height: 70vh !important;
}

"""
demo = gr.Interface(
    chat,
    [gr.Textbox(lines=1, label="Message"), "state"],
    [chatbot, "state"],
    allow_flagging="never",
    title="Mental Health Bot | Data Science Dojo",
    css=css
)
if __name__ == "__main__":
    demo.launch()