File size: 2,507 Bytes
ea2f7c7
 
 
 
 
 
ad1ac8f
ea2f7c7
 
 
 
 
 
ad1ac8f
ea2f7c7
 
 
 
ad1ac8f
ea2f7c7
 
 
 
ad1ac8f
 
ea2f7c7
ad1ac8f
 
 
 
 
ea2f7c7
ad1ac8f
 
ea2f7c7
 
ad1ac8f
ea2f7c7
 
ad1ac8f
 
ea2f7c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad1ac8f
 
 
 
ea2f7c7
 
ad1ac8f
 
 
 
ea2f7c7
 
 
ad1ac8f
ea2f7c7
 
ad1ac8f
 
 
ea2f7c7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch


def calc_mean_std(feat, eps=1e-5):
    # eps is a small value added to the variance to avoid divide-by-zero.
    size = feat.size()
    assert len(size) == 4
    N, C = size[:2]
    feat_var = feat.view(N, C, -1).var(dim=2) + eps
    feat_std = feat_var.sqrt().view(N, C, 1, 1)
    feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
    return feat_mean, feat_std


def calc_mean_std1(feat, eps=1e-5):
    # eps is a small value added to the variance to avoid divide-by-zero.
    size = feat.size()
    # assert (len(size) == 4)
    WH, N, C = size
    feat_var = feat.var(dim=0) + eps
    feat_std = feat_var.sqrt()
    feat_mean = feat.mean(dim=0)
    return feat_mean, feat_std


def normal(feat, eps=1e-5):
    feat_mean, feat_std = calc_mean_std(feat, eps)
    normalized = (feat - feat_mean) / feat_std
    return normalized


def normal_style(feat, eps=1e-5):
    feat_mean, feat_std = calc_mean_std1(feat, eps)
    normalized = (feat - feat_mean) / feat_std
    return normalized


def _calc_feat_flatten_mean_std(feat):
    # takes 3D feat (C, H, W), return mean and std of array within channels
    assert feat.size()[0] == 3
    assert isinstance(feat, torch.FloatTensor)
    feat_flatten = feat.view(3, -1)
    mean = feat_flatten.mean(dim=-1, keepdim=True)
    std = feat_flatten.std(dim=-1, keepdim=True)
    return feat_flatten, mean, std


def _mat_sqrt(x):
    U, D, V = torch.svd(x)
    return torch.mm(torch.mm(U, D.pow(0.5).diag()), V.t())


def coral(source, target):
    # assume both source and target are 3D array (C, H, W)
    # Note: flatten -> f

    source_f, source_f_mean, source_f_std = _calc_feat_flatten_mean_std(source)
    source_f_norm = (
        source_f - source_f_mean.expand_as(source_f)
    ) / source_f_std.expand_as(source_f)
    source_f_cov_eye = torch.mm(source_f_norm, source_f_norm.t()) + torch.eye(3)

    target_f, target_f_mean, target_f_std = _calc_feat_flatten_mean_std(target)
    target_f_norm = (
        target_f - target_f_mean.expand_as(target_f)
    ) / target_f_std.expand_as(target_f)
    target_f_cov_eye = torch.mm(target_f_norm, target_f_norm.t()) + torch.eye(3)

    source_f_norm_transfer = torch.mm(
        _mat_sqrt(target_f_cov_eye),
        torch.mm(torch.inverse(_mat_sqrt(source_f_cov_eye)), source_f_norm),
    )

    source_f_transfer = source_f_norm_transfer * target_f_std.expand_as(
        source_f_norm
    ) + target_f_mean.expand_as(source_f_norm)

    return source_f_transfer.view(source.size())