File size: 4,222 Bytes
ad1ac8f
 
 
 
ea2f7c7
 
ad1ac8f
ea2f7c7
ad1ac8f
 
 
 
 
 
 
 
 
 
 
 
ea2f7c7
ad1ac8f
ea2f7c7
 
ad1ac8f
 
 
ea2f7c7
 
 
 
 
 
 
 
ad1ac8f
 
 
 
 
ea2f7c7
 
 
 
 
 
 
 
ad1ac8f
ea2f7c7
 
 
 
ad1ac8f
ea2f7c7
 
 
 
 
 
 
 
 
ad1ac8f
 
 
 
 
 
 
ea2f7c7
 
ad1ac8f
ea2f7c7
 
ad1ac8f
 
 
 
 
ea2f7c7
 
 
 
 
ad1ac8f
 
ea2f7c7
 
 
ad1ac8f
ea2f7c7
 
 
 
 
 
ad1ac8f
ea2f7c7
 
 
 
 
 
 
ad1ac8f
 
 
 
 
 
 
ea2f7c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad1ac8f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import math
import warnings
from itertools import repeat

import torch
from torch import nn
from torch._six import container_abcs


def drop_path(x, drop_prob: float = 0.0, training: bool = False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main
    path of residual blocks). This is the same as the DropConnect impl
    I created for EfficientNet, etc networks, however, the original name
    is misleading as 'Drop Connect' is a different form of dropout in a
    separate paper... See discussion:
    https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
    I've opted for changing the layer and argument names to 'drop path'
    rather than mix DropConnect as a layer name and use 'survival rate'
    as the argument.
    """
    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (
        x.ndim - 1
    )  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """
    Drop paths (Stochastic Depth) per sample
    (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob: float = None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


# From PyTorch internals
def _ntuple(n: int):
    def parse(x):
        if isinstance(x, container_abcs.Iterable):
            return x
        return tuple(repeat(x, n))

    return parse


to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)


def _no_grad_trunc_normal_(
    tensor: torch.tensor, mean: float, std: float, a: float, b: float
):
    # Cut & paste from PyTorch official master
    # until it's in a few official releases - RW
    # Method based on:
    # https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn(
            "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
            "The distribution of values may be incorrect.",
            stacklevel=2,
        )

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        lower = norm_cdf((a - mean) / std)
        upper = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * lower - 1, 2 * upper - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.0))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def trunc_normal_(
    tensor: torch.tensor,
    mean: float = 0.0,
    std: float = 1.0,
    a: float = -2.0,
    b: float = 2.0,
):
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.
    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value
    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    """
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)