Spaces:
Build error
Build error
File size: 9,128 Bytes
ab92204 e4fb230 ab92204 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import torch
import torch.nn.functional as F
from torch import nn
import numpy as np
import box_ops
from misc import (NestedTensor, nested_tensor_from_tensor_list,
accuracy, get_world_size, interpolate,
is_dist_avail_and_initialized)
from function import normal,normal_style
from function import calc_mean_std
import scipy.stats as stats
from ViT_helper import DropPath, to_2tuple, trunc_normal_
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=256, patch_size=8, in_chans=3, embed_dim=512):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.up1 = nn.Upsample(scale_factor=2, mode='nearest')
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x)
return x
decoder = nn.Sequential(
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 256, (3, 3)),
nn.ReLU(),
nn.Upsample(scale_factor=2, mode='nearest'),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 128, (3, 3)),
nn.ReLU(),
nn.Upsample(scale_factor=2, mode='nearest'),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 128, (3, 3)),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 64, (3, 3)),
nn.ReLU(),
nn.Upsample(scale_factor=2, mode='nearest'),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 64, (3, 3)),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 3, (3, 3)),
)
vgg = nn.Sequential(
nn.Conv2d(3, 3, (1, 1)),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(3, 64, (3, 3)),
nn.ReLU(), # relu1-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 64, (3, 3)),
nn.ReLU(), # relu1-2
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 128, (3, 3)),
nn.ReLU(), # relu2-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 128, (3, 3)),
nn.ReLU(), # relu2-2
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 256, (3, 3)),
nn.ReLU(), # relu3-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(), # relu3-2
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(), # relu3-3
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(), # relu3-4
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 512, (3, 3)),
nn.ReLU(), # relu4-1, this is the last layer used
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu4-2
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu4-3
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu4-4
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu5-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu5-2
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu5-3
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU() # relu5-4
)
class MLP(nn.Module):
""" Very simple multi-layer perceptron (also called FFN)"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
class StyTrans(nn.Module):
""" This is the style transform transformer module """
def __init__(self,encoder,decoder,PatchEmbed, transformer):
super().__init__()
enc_layers = list(encoder.children())
self.enc_1 = nn.Sequential(*enc_layers[:4]) # input -> relu1_1
self.enc_2 = nn.Sequential(*enc_layers[4:11]) # relu1_1 -> relu2_1
self.enc_3 = nn.Sequential(*enc_layers[11:18]) # relu2_1 -> relu3_1
self.enc_4 = nn.Sequential(*enc_layers[18:31]) # relu3_1 -> relu4_1
self.enc_5 = nn.Sequential(*enc_layers[31:44]) # relu4_1 -> relu5_1
for name in ['enc_1', 'enc_2', 'enc_3', 'enc_4', 'enc_5']:
for param in getattr(self, name).parameters():
param.requires_grad = False
self.mse_loss = nn.MSELoss()
self.transformer = transformer
hidden_dim = transformer.d_model
self.decode = decoder
self.embedding = PatchEmbed
def encode_with_intermediate(self, input):
results = [input]
for i in range(5):
func = getattr(self, 'enc_{:d}'.format(i + 1))
results.append(func(results[-1]))
return results[1:]
def calc_content_loss(self, input, target):
assert (input.size() == target.size())
assert (target.requires_grad is False)
return self.mse_loss(input, target)
def calc_style_loss(self, input, target):
assert (input.size() == target.size())
assert (target.requires_grad is False)
input_mean, input_std = calc_mean_std(input)
target_mean, target_std = calc_mean_std(target)
return self.mse_loss(input_mean, target_mean) + \
self.mse_loss(input_std, target_std)
def forward(self, samples_c: NestedTensor,samples_s: NestedTensor):
""" The forward expects a NestedTensor, which consists of:
- samples.tensor: batched images, of shape [batch_size x 3 x H x W]
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
"""
content_input = samples_c
style_input = samples_s
if isinstance(samples_c, (list, torch.Tensor)):
samples_c = nested_tensor_from_tensor_list(samples_c) # support different-sized images padding is used for mask [tensor, mask]
if isinstance(samples_s, (list, torch.Tensor)):
samples_s = nested_tensor_from_tensor_list(samples_s)
# ### features used to calcate loss
content_feats = self.encode_with_intermediate(samples_c.tensors)
style_feats = self.encode_with_intermediate(samples_s.tensors)
### Linear projection
style = self.embedding(samples_s.tensors)
content = self.embedding(samples_c.tensors)
# postional embedding is calculated in transformer.py
pos_s = None
pos_c = None
mask = None
hs = self.transformer(style, mask , content, pos_c, pos_s)
Ics = self.decode(hs)
Ics_feats = self.encode_with_intermediate(Ics)
loss_c = self.calc_content_loss(normal(Ics_feats[-1]), normal(content_feats[-1]))+self.calc_content_loss(normal(Ics_feats[-2]), normal(content_feats[-2]))
# Style loss
loss_s = self.calc_style_loss(Ics_feats[0], style_feats[0])
for i in range(1, 5):
loss_s += self.calc_style_loss(Ics_feats[i], style_feats[i])
Icc = self.decode(self.transformer(content, mask , content, pos_c, pos_c))
Iss = self.decode(self.transformer(style, mask , style, pos_s, pos_s))
#Identity losses lambda 1
loss_lambda1 = self.calc_content_loss(Icc,content_input)+self.calc_content_loss(Iss,style_input)
#Identity losses lambda 2
Icc_feats=self.encode_with_intermediate(Icc)
Iss_feats=self.encode_with_intermediate(Iss)
loss_lambda2 = self.calc_content_loss(Icc_feats[0], content_feats[0])+self.calc_content_loss(Iss_feats[0], style_feats[0])
for i in range(1, 5):
loss_lambda2 += self.calc_content_loss(Icc_feats[i], content_feats[i])+self.calc_content_loss(Iss_feats[i], style_feats[i])
# Please select and comment out one of the following two sentences
return Ics, loss_c, loss_s, loss_lambda1, loss_lambda2 #train
# return Ics #test |