File size: 9,128 Bytes
ab92204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4fb230
ab92204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import torch
import torch.nn.functional as F
from torch import nn
import numpy as np
import box_ops
from misc import (NestedTensor, nested_tensor_from_tensor_list,
                       accuracy, get_world_size, interpolate,
                       is_dist_avail_and_initialized)
from function import normal,normal_style
from function import calc_mean_std
import scipy.stats as stats
from ViT_helper import DropPath, to_2tuple, trunc_normal_

class PatchEmbed(nn.Module):
    """ Image to Patch Embedding

    """
    def __init__(self, img_size=256, patch_size=8, in_chans=3, embed_dim=512):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.up1 = nn.Upsample(scale_factor=2, mode='nearest')

    def forward(self, x):
        B, C, H, W = x.shape
        x = self.proj(x)

        return x


decoder = nn.Sequential(
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 256, (3, 3)),
    nn.ReLU(),
    nn.Upsample(scale_factor=2, mode='nearest'),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 256, (3, 3)),
    nn.ReLU(),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 256, (3, 3)),
    nn.ReLU(),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 256, (3, 3)),
    nn.ReLU(),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 128, (3, 3)),
    nn.ReLU(),
    nn.Upsample(scale_factor=2, mode='nearest'),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(128, 128, (3, 3)),
    nn.ReLU(),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(128, 64, (3, 3)),
    nn.ReLU(),
    nn.Upsample(scale_factor=2, mode='nearest'),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(64, 64, (3, 3)),
    nn.ReLU(),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(64, 3, (3, 3)),
)

vgg = nn.Sequential(
    nn.Conv2d(3, 3, (1, 1)),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(3, 64, (3, 3)),
    nn.ReLU(),  # relu1-1
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(64, 64, (3, 3)),
    nn.ReLU(),  # relu1-2
    nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(64, 128, (3, 3)),
    nn.ReLU(),  # relu2-1
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(128, 128, (3, 3)),
    nn.ReLU(),  # relu2-2
    nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(128, 256, (3, 3)),
    nn.ReLU(),  # relu3-1
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 256, (3, 3)),
    nn.ReLU(),  # relu3-2
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 256, (3, 3)),
    nn.ReLU(),  # relu3-3
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 256, (3, 3)),
    nn.ReLU(),  # relu3-4
    nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 512, (3, 3)),
    nn.ReLU(),  # relu4-1, this is the last layer used
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 512, (3, 3)),
    nn.ReLU(),  # relu4-2
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 512, (3, 3)),
    nn.ReLU(),  # relu4-3
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 512, (3, 3)),
    nn.ReLU(),  # relu4-4
    nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 512, (3, 3)),
    nn.ReLU(),  # relu5-1
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 512, (3, 3)),
    nn.ReLU(),  # relu5-2
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 512, (3, 3)),
    nn.ReLU(),  # relu5-3
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 512, (3, 3)),
    nn.ReLU()  # relu5-4
)

class MLP(nn.Module):
    """ Very simple multi-layer perceptron (also called FFN)"""

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x
class StyTrans(nn.Module):
    """ This is the style transform transformer module """
    
    def __init__(self,encoder,decoder,PatchEmbed, transformer):

        super().__init__()
        enc_layers = list(encoder.children())
        self.enc_1 = nn.Sequential(*enc_layers[:4])  # input -> relu1_1
        self.enc_2 = nn.Sequential(*enc_layers[4:11])  # relu1_1 -> relu2_1
        self.enc_3 = nn.Sequential(*enc_layers[11:18])  # relu2_1 -> relu3_1
        self.enc_4 = nn.Sequential(*enc_layers[18:31])  # relu3_1 -> relu4_1
        self.enc_5 = nn.Sequential(*enc_layers[31:44])  # relu4_1 -> relu5_1
        
        for name in ['enc_1', 'enc_2', 'enc_3', 'enc_4', 'enc_5']:
            for param in getattr(self, name).parameters():
                param.requires_grad = False

        self.mse_loss = nn.MSELoss()
        self.transformer = transformer
        hidden_dim = transformer.d_model       
        self.decode = decoder
        self.embedding = PatchEmbed

    def encode_with_intermediate(self, input):
        results = [input]
        for i in range(5):
            func = getattr(self, 'enc_{:d}'.format(i + 1))
            results.append(func(results[-1]))
        return results[1:]

    def calc_content_loss(self, input, target):
      assert (input.size() == target.size())
      assert (target.requires_grad is False)
      return self.mse_loss(input, target)

    def calc_style_loss(self, input, target):
        assert (input.size() == target.size())
        assert (target.requires_grad is False)
        input_mean, input_std = calc_mean_std(input)
        target_mean, target_std = calc_mean_std(target)
        return self.mse_loss(input_mean, target_mean) + \
               self.mse_loss(input_std, target_std)
    def forward(self, samples_c: NestedTensor,samples_s: NestedTensor):
        """ The forward expects a NestedTensor, which consists of:

               - samples.tensor: batched images, of shape [batch_size x 3 x H x W]

               - samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels



        """
        content_input = samples_c
        style_input = samples_s
        if isinstance(samples_c, (list, torch.Tensor)):
            samples_c = nested_tensor_from_tensor_list(samples_c)   # support different-sized images padding is used for mask [tensor, mask] 
        if isinstance(samples_s, (list, torch.Tensor)):
            samples_s = nested_tensor_from_tensor_list(samples_s) 
        
        # ### features used to calcate loss 
        content_feats = self.encode_with_intermediate(samples_c.tensors)
        style_feats = self.encode_with_intermediate(samples_s.tensors)

        ### Linear projection
        style = self.embedding(samples_s.tensors)
        content = self.embedding(samples_c.tensors)
        
        # postional embedding is calculated in transformer.py
        pos_s = None
        pos_c = None

        mask = None
        hs = self.transformer(style, mask , content, pos_c, pos_s)   
        Ics = self.decode(hs)

        Ics_feats = self.encode_with_intermediate(Ics)
        loss_c = self.calc_content_loss(normal(Ics_feats[-1]), normal(content_feats[-1]))+self.calc_content_loss(normal(Ics_feats[-2]), normal(content_feats[-2]))
        # Style loss
        loss_s = self.calc_style_loss(Ics_feats[0], style_feats[0])
        for i in range(1, 5):
            loss_s += self.calc_style_loss(Ics_feats[i], style_feats[i])
            
        
        Icc = self.decode(self.transformer(content, mask , content, pos_c, pos_c))
        Iss = self.decode(self.transformer(style, mask , style, pos_s, pos_s))    

        #Identity losses lambda 1    
        loss_lambda1 = self.calc_content_loss(Icc,content_input)+self.calc_content_loss(Iss,style_input)
        
        #Identity losses lambda 2
        Icc_feats=self.encode_with_intermediate(Icc)
        Iss_feats=self.encode_with_intermediate(Iss)
        loss_lambda2 = self.calc_content_loss(Icc_feats[0], content_feats[0])+self.calc_content_loss(Iss_feats[0], style_feats[0])
        for i in range(1, 5):
            loss_lambda2 += self.calc_content_loss(Icc_feats[i], content_feats[i])+self.calc_content_loss(Iss_feats[i], style_feats[i])
        # Please select and comment out one of the following two sentences
        return Ics,  loss_c, loss_s, loss_lambda1, loss_lambda2   #train
        # return Ics    #test