Spaces:
Sleeping
Sleeping
File size: 6,122 Bytes
4858ba5 2a1d061 28623de 9a42f0f aad99a8 1d1ec23 4858ba5 2a1d061 1d1ec23 4858ba5 1d1ec23 2a1d061 1d1ec23 e2762c5 98c19b6 e2762c5 98c19b6 e2762c5 1d1ec23 4858ba5 1d1ec23 4858ba5 9a42f0f 476f578 9a42f0f fb83515 3e27538 9a42f0f fb83515 9a42f0f 98c19b6 9a42f0f e44c00b 1d1ec23 332cf4d 1d1ec23 332cf4d 1d1ec23 4858ba5 28623de 277bf9b 28623de 4858ba5 1d1ec23 c74f0d5 1d1ec23 4858ba5 9a42f0f c74f0d5 bf6bb3c 4858ba5 9a42f0f 4858ba5 2a1d061 4858ba5 183f524 4858ba5 b2bfa4a 4858ba5 b2bfa4a 4858ba5 9a42f0f 4858ba5 9a42f0f 4858ba5 9a42f0f c74f0d5 4858ba5 c74f0d5 2a1d061 1d1ec23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import os
import duckdb
import gradio as gr
import matplotlib.pyplot as plt
from transformers import HfEngine, ReactCodeAgent
from transformers.agents import Tool
from langsmith import traceable
from langchain import hub
# Height of the Tabs Text Area
TAB_LINES = 8
#----------CONNECT TO DATABASE----------
md_token = os.getenv('MD_TOKEN')
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}", read_only=True)
#---------------------------------------
#-------LOAD HUGGINGFACE MODEL-------
models = ["Qwen/Qwen2.5-72B-Instruct","meta-llama/Meta-Llama-3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct"]
model_loaded = False
for model in models:
try:
llm_engine = HfEngine(model=model)
info = llm_engine.client.get_endpoint_info()
model_loaded = True
break
except Exception as e:
print(f"Error for model {model}: {e}")
continue
if not model_loaded:
gr.Warning(f"β None of the model form {models} are available. {e}")
#---------------------------------------
#-----LOAD PROMPT FROM LANCHAIN HUB-----
prompt = hub.pull("viz-prompt")
#-------------------------------------
#--------------ALL UTILS----------------
def get_schemas():
schemas = conn.execute("""
SELECT DISTINCT schema_name
FROM information_schema.schemata
WHERE schema_name NOT IN ('information_schema', 'pg_catalog')
""").fetchall()
return [item[0] for item in schemas]
# Get Tables
def get_tables(schema_name):
tables = conn.execute(f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'").fetchall()
return [table[0] for table in tables]
# Update Tables
def update_tables(schema_name):
tables = get_tables(schema_name)
return gr.update(choices=tables)
# Get Schema
def get_table_schema(table):
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
ddl_create = result.iloc[0,0]
parent_database = result.iloc[0,1]
schema_name = result.iloc[0,2]
full_path = f"{parent_database}.{schema_name}.{table}"
if schema_name != "main":
old_path = f"{schema_name}.{table}"
else:
old_path = table
ddl_create = ddl_create.replace(old_path, full_path)
return ddl_create, full_path
class SQLExecutorTool(Tool):
name = "sql_engine"
inputs = {
"query": {
"type": "text",
"description": f"The query to perform. This should be correct DuckDB SQL.",
}
}
description = """Allows you to perform SQL queries on the table. Returns a pandas dataframe representation of the result."""
output_type = "pandas.core.frame.DataFrame"
def forward(self, query: str) -> str:
output_df = conn.sql(query).df()
return output_df
tool = SQLExecutorTool()
def process_outputs(output) :
return {
'sql': output.get('sql', None),
'code': output.get('code', None)
}
@traceable(process_outputs=process_outputs)
def get_visualization(question, schema, table_name):
agent = ReactCodeAgent(tools=[tool], llm_engine=llm_engine, add_base_tools=True,
additional_authorized_imports=['matplotlib.pyplot',
'pandas', 'plotly.express',
'seaborn'], max_iterations=10)
results = agent.run(
task= prompt.format(question=question, schema=schema, table_name=table_name)
)
return results
#---------------------------------------
def main(table, text_query):
# Empty Fig
fig, ax = plt.subplots()
ax.set_axis_off()
schema, table_name = get_table_schema(table)
try:
output = get_visualization(question=text_query, schema=schema, table_name=table_name)
fig = output.get('fig', None)
generated_sql = output.get('sql', None)
data = output.get('data', None)
except Exception as e:
gr.Warning(f"β Unable to generate the visualization. {e}")
return fig, generated_sql, data
custom_css = """
.gradio-container {
background-color: #f0f4f8;
}
.logo {
max-width: 200px;
margin: 20px auto;
display: block;
}
.gr-button {
background-color: #4a90e2 !important;
}
.gr-button:hover {
background-color: #3a7bc8 !important;
}
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
gr.Markdown("""
<div style='text-align: center;'>
<strong style='font-size: 36px;'>DataViz Agent</strong>
<br>
<span style='font-size: 20px;'>Visualize SQL queries based on a given text for the dataset.</span>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
schema_dropdown = gr.Dropdown(choices=get_schemas(), label="Select Schema", interactive=True)
tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None)
with gr.Column(scale=2):
query_input = gr.Textbox(lines=3, label="Text Query", placeholder="Enter your text query here...")
with gr.Row():
with gr.Column(scale=7):
pass
with gr.Column(scale=1):
generate_query_button = gr.Button("Run Query", variant="primary")
with gr.Tabs():
with gr.Tab("Plot"):
result_plot = gr.Plot()
with gr.Tab("SQL"):
generated_sql = gr.Textbox(lines=TAB_LINES, label="Generated SQL", value="", interactive=False,
autoscroll=False)
with gr.Tab("Data"):
data = gr.Dataframe(label="Data", interactive=False)
schema_dropdown.change(update_tables, inputs=schema_dropdown, outputs=tables_dropdown)
generate_query_button.click(main, inputs=[tables_dropdown, query_input], outputs=[result_plot, generated_sql, data])
if __name__ == "__main__":
demo.launch(debug=True)
|