File size: 6,122 Bytes
4858ba5
 
2a1d061
28623de
9a42f0f
 
aad99a8
1d1ec23
 
 
4858ba5
 
2a1d061
1d1ec23
 
 
4858ba5
1d1ec23
2a1d061
1d1ec23
e2762c5
98c19b6
 
e2762c5
98c19b6
e2762c5
 
 
 
 
 
 
 
 
 
 
1d1ec23
 
 
 
 
 
4858ba5
1d1ec23
4858ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a42f0f
 
476f578
9a42f0f
 
 
 
 
 
 
fb83515
3e27538
9a42f0f
fb83515
9a42f0f
98c19b6
9a42f0f
 
 
e44c00b
1d1ec23
332cf4d
 
 
 
1d1ec23
 
 
 
 
 
 
 
332cf4d
1d1ec23
 
 
 
 
 
4858ba5
28623de
 
 
 
277bf9b
28623de
4858ba5
1d1ec23
c74f0d5
 
 
1d1ec23
4858ba5
9a42f0f
 
c74f0d5
 
bf6bb3c
4858ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
9a42f0f
4858ba5
 
2a1d061
 
4858ba5
183f524
4858ba5
 
 
b2bfa4a
4858ba5
b2bfa4a
4858ba5
 
 
 
 
9a42f0f
4858ba5
 
 
 
9a42f0f
4858ba5
 
 
 
 
 
9a42f0f
 
 
c74f0d5
 
 
 
 
4858ba5
 
c74f0d5
2a1d061
 
1d1ec23
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import duckdb
import gradio as gr
import matplotlib.pyplot as plt
from transformers import HfEngine, ReactCodeAgent
from transformers.agents import Tool
from langsmith import traceable
from langchain import hub


# Height of the Tabs Text Area
TAB_LINES = 8


#----------CONNECT TO DATABASE----------
md_token = os.getenv('MD_TOKEN')
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}", read_only=True)
#---------------------------------------

#-------LOAD HUGGINGFACE MODEL-------
models = ["Qwen/Qwen2.5-72B-Instruct","meta-llama/Meta-Llama-3-70B-Instruct",
          "meta-llama/Llama-3.1-70B-Instruct"]

model_loaded = False 
for model in models:
  try:
      llm_engine = HfEngine(model=model)
      info = llm_engine.client.get_endpoint_info()
      model_loaded = True
      break
  except Exception as e:
      print(f"Error for model {model}: {e}")
      continue

if not model_loaded:
    gr.Warning(f"❌ None of the model form {models} are available. {e}")
#---------------------------------------

#-----LOAD PROMPT FROM LANCHAIN HUB-----
prompt = hub.pull("viz-prompt")
#-------------------------------------


#--------------ALL UTILS----------------
def get_schemas():
    schemas = conn.execute("""
    SELECT DISTINCT schema_name
    FROM information_schema.schemata
    WHERE schema_name NOT IN ('information_schema', 'pg_catalog')
    """).fetchall()
    return [item[0] for item in schemas]

# Get Tables
def get_tables(schema_name):
    tables = conn.execute(f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'").fetchall()
    return [table[0] for table in tables]

# Update Tables
def update_tables(schema_name):
    tables = get_tables(schema_name)
    return gr.update(choices=tables)

# Get Schema
def get_table_schema(table):
    result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
    ddl_create = result.iloc[0,0]
    parent_database = result.iloc[0,1]
    schema_name = result.iloc[0,2]
    full_path = f"{parent_database}.{schema_name}.{table}"
    if schema_name != "main":
        old_path = f"{schema_name}.{table}"
    else:
        old_path = table
    ddl_create = ddl_create.replace(old_path, full_path)
    return ddl_create, full_path


class SQLExecutorTool(Tool):
    name = "sql_engine"
    inputs = {
        "query": {
            "type": "text",
            "description": f"The query to perform. This should be correct DuckDB SQL.",
        }
    }
    description = """Allows you to perform SQL queries on the table. Returns a pandas dataframe representation of the result."""
    output_type = "pandas.core.frame.DataFrame"

    def forward(self, query: str) -> str:
        output_df = conn.sql(query).df()
        return output_df
    
tool = SQLExecutorTool()

def process_outputs(output) :
    return {
        'sql': output.get('sql', None),
        'code': output.get('code', None)
    }

@traceable(process_outputs=process_outputs)
def get_visualization(question, schema, table_name):
    agent = ReactCodeAgent(tools=[tool], llm_engine=llm_engine, add_base_tools=True,
                           additional_authorized_imports=['matplotlib.pyplot',
                                                 'pandas', 'plotly.express',
                                                 'seaborn'], max_iterations=10)
    results = agent.run(
        task= prompt.format(question=question, schema=schema, table_name=table_name)
    )

    return results
#---------------------------------------


def main(table, text_query):
    # Empty Fig
    fig, ax = plt.subplots()
    ax.set_axis_off()  
    
    schema, table_name = get_table_schema(table)
    
    try:
        output = get_visualization(question=text_query, schema=schema, table_name=table_name)
        fig = output.get('fig', None)
        generated_sql = output.get('sql', None)
        data = output.get('data', None)

    except Exception as e:
        gr.Warning(f"❌ Unable to generate the visualization. {e}")
        
    return fig, generated_sql, data
    
    

custom_css = """
.gradio-container {
    background-color: #f0f4f8;
}
.logo {
    max-width: 200px;
    margin: 20px auto;
    display: block;
}
.gr-button {
    background-color: #4a90e2 !important;
}
.gr-button:hover {
    
    background-color: #3a7bc8 !important;
}
"""

with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
    gr.Image("logo.png", label=None, show_label=False, container=False, height=100)

    gr.Markdown("""
    <div style='text-align: center;'>
    <strong style='font-size: 36px;'>DataViz Agent</strong>
    <br>
    <span style='font-size: 20px;'>Visualize SQL queries based on a given text for the dataset.</span>
    </div>
    """)

    with gr.Row():

        with gr.Column(scale=1):
            schema_dropdown = gr.Dropdown(choices=get_schemas(), label="Select Schema", interactive=True)
            tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None)

        with gr.Column(scale=2):
            query_input = gr.Textbox(lines=3, label="Text Query", placeholder="Enter your text query here...")
            with gr.Row():
                with gr.Column(scale=7):
                    pass
                with gr.Column(scale=1):
                    generate_query_button = gr.Button("Run Query", variant="primary")

    with gr.Tabs():
        with gr.Tab("Plot"):
            result_plot = gr.Plot()
        with gr.Tab("SQL"):    
            generated_sql = gr.Textbox(lines=TAB_LINES, label="Generated SQL", value="", interactive=False,
                                              autoscroll=False)
        with gr.Tab("Data"):    
            data = gr.Dataframe(label="Data", interactive=False)

        schema_dropdown.change(update_tables, inputs=schema_dropdown, outputs=tables_dropdown)
        generate_query_button.click(main, inputs=[tables_dropdown, query_input], outputs=[result_plot, generated_sql, data])

if __name__ == "__main__":
    demo.launch(debug=True)