Spaces:
Running
Running
File size: 78,220 Bytes
03fe87d b60c3fd 03fe87d b60c3fd 03fe87d f16d88c 03fe87d b60c3fd 03fe87d b60c3fd 03fe87d b60c3fd 777d505 df3f7e9 0374ded df3f7e9 777d505 b60c3fd df3f7e9 03fe87d df3f7e9 03fe87d df3f7e9 03fe87d 384275f 03fe87d 384275f 03fe87d b60c3fd e0f1371 b60c3fd 672ae7d b60c3fd 03fe87d f16d88c 03fe87d b60c3fd e0f1371 b60c3fd 01c58a3 03fe87d b60c3fd 03fe87d 777d505 03fe87d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 |
import os
import time
from operator import itemgetter
from collections import Counter
from langchain_community.document_loaders import PyPDFLoader, TextLoader
from chainlit.types import AskFileResponse
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema.runnable import Runnable, RunnablePassthrough, RunnableLambda
from langchain.schema.runnable.config import RunnableConfig
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain, create_extraction_chain
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_community.llms import HuggingFaceEndpoint
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.schema import StrOutputParser
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain_pinecone import PineconeVectorStore
from pinecone import Pinecone
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
import pandas as pd
import numpy as np
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
from langchain_anthropic import ChatAnthropic
import chainlit as cl
from chainlit.input_widget import Select, TextInput
from chainlit import user_session
from offres_emploi import Api
from offres_emploi.utils import dt_to_str_iso
import datetime
import plotly.express as px
import bcrypt
import json
import requests
import http.client
from literalai import LiteralClient
literal_client = LiteralClient(api_key=os.getenv("LITERAL_API_KEY"))
literal_client.instrument_openai()
@cl.password_auth_callback
def auth_callback(username: str, password: str):
auth = json.loads(os.environ['CHAINLIT_AUTH_LOGIN'])
ident = next(d['ident'] for d in auth if d['ident'] == username)
pwd = next(d['pwd'] for d in auth if d['ident'] == username)
resultLogAdmin = bcrypt.checkpw(username.encode('utf-8'), bcrypt.hashpw(ident.encode('utf-8'), bcrypt.gensalt()))
resultPwdAdmin = bcrypt.checkpw(password.encode('utf-8'), bcrypt.hashpw(pwd.encode('utf-8'), bcrypt.gensalt()))
resultRole = next(d['role'] for d in auth if d['ident'] == username)
if resultLogAdmin and resultPwdAdmin and resultRole == "admindatapcc":
return cl.User(
identifier=ident + " : 🧑💼 Admin Datapcc", metadata={"role": "admin", "provider": "credentials"}
)
elif resultLogAdmin and resultPwdAdmin and resultRole == "userdatapcc":
return cl.User(
identifier=ident + " : 🧑🎓 User Datapcc", metadata={"role": "user", "provider": "credentials"}
)
def process_file(file: AskFileResponse):
if file.type == "text/plain":
Loader = TextLoader
elif file.type == "application/pdf":
Loader = PyPDFLoader
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
loader = Loader(file.path)
documents = loader.load()
docs = text_splitter.split_documents(documents)
return docs
def modele(document):
match document:
case "Note de composante sectorielle":
note = """
2. Analyse du système travail
2.1 Secteurs en lien avec la discipline
2.1.1 Indiquer la nature des secteurs, la répartition des entreprises. Décrire les enjeux pour ce secteur (axes de développement, de transformations). Indiquer les OPérateurs de COmpétences de la branche professionnelle correspondante en France.
2.2 Analyses des offres d’emploi
2.2.1 Indiquer les statistiques de l’emploi sur une période. Identifier les 5 principales appellations métiers seulement en fonction du contexte, en créer une liste contextualisée, avec les pourcentages du nombre d'offres pour chaque emploi par rapport au nombre total d'offres.
2.2.2 missions, activités et compétences demandées (écrites avec un verbe d'action). Décrire le/les profils types des recrutés par les employeurs du système de travail. Lister, au format liste, les évolutions professionnelles ou les exemples de spécialisation, lister, au format liste, les débouchés, lister, au format liste, les avantages du métier, lister, au format liste, les inconvénients du métier, lister, au format liste, les conseils pour réussir dans ce métier.
2.2.3 Indiquer si les emplois sont en tension
"""
case "Fiche Potentiel Profil de Sortie":
note = """
1. Nom de la fiche
2. Niveau du diplôme et son Intitulé (nom long plus sigle). Le niveau de qualification
3. Le résumé du profil et du potentiel de sortie. Il est composé de plusieurs parties :
L'identité/ les spécificités de la composante. Cette introduction de 5 à 10 lignes est utile pour caractériser le diplôme. Il s'agit d’avoir une description sur les thématiques de recherche de la composante. Elles sont indiquées afin d’établir le lien entre la recherche et des enjeux possibles dans le système travail. Elle facilite la compréhension des domaines de compétences dans lequel s’inscrit le futur diplômé. La culture disciplinaire est à indiquer car elle contribue à caractériser le diplôme.
L'identité professionnelle du diplômé. Les informations professionnelles sont organisées par mailles (du plus large au plus précis) secteur, famille de métiers, activités, compétences, compétences transversales. Il est nécessaire d’être attentif au niveau de qualification de sortie. Nous avons des emplois accessibles dès l’obtention du diplôme, d'autres ne le seront qu’avec un une qualification supérieure et/ou avec de l’expérience. Il souhaitable de faire une description globale du profil en apportant des informations sur le niveau d’autonomie et de responsabilité et les caractéristiques d’exercice des emplois (spécialisé ou généraliste, polyvalent ou expert etc).Cette seconde partie de texte de 10 à 15 lignes introduit les domaines et enjeux sectoriels et/ou terrain de mise en œuvre (3 lignes), les principales appellations d’emploi (1 à 2 lignes), les activités professionnelles (employabilité ) et le processus métier (3 à 4 lignes), les principaux interlocuteurs (1 à 2 lignes), les différents contextes de mise en œuvre (déplacements, langues étrangères). Cette description peut être suivi la liste d’emplois (avec une présentation courte 5 lignes) accessibles en indiquant le cas échéant les spécificités
4. La réglementation le cas échéant
5. Secteurs d'activité ou types d'emplois accessibles par le détenteur de ce diplôme
6. Le type de structure et d’organisations professionnelles
7. Listes des suites de parcours académiques ou passerelles de formation
8. Codes Rome
9. Référence de la fiche RNCP
"""
return note
def definition(document):
if document == "activite":
meanings = """
Définition d'une activité : une activité est un ensemble cohérent d'actions combinées : pour la réaliser, plusieurs compétences et opérations sont nécessaires, soit successivement, soit conjointement. Elles s'inscrivent à des moments clés du processus de réalisation et ne peuvent en aucun cas être occultées, car elles conditionnent le résultat. Plusieurs activités en vue d'une finalité avec une valeur ajoutée à un produit ou un service sont nécessaires pour mettre en œuvre un processus métier. De ce fait, il est essentiel de déterminer pour chaque activité sa propre finalité et de s'assurer que l'ensemble des activités participent bien d'un même processus.
"""
elif document == "competence":
meanings = """
Définition d'une compétence : la compétence est une combinaison de savoirs en action, mobilisés en vue de réaliser une activité professionnelle. Elle s'apprécie, en tant qu'acquis de l'apprentissage selon des modalités adaptées permettant d'en certifier la possession et au regard de l'atteinte d'un résultat pour un niveau d'exigence prédéterminé. Les compétences peuvent être regroupées par domaines selon la nature et leur liaison subordonnée aux activités. Elles s'écrivent à l'aide de verbe d'action à l'infinitif comme le stipule la taxonomie de Bloom pour marquer une progression dans l'exercice de la compétence.
"""
elif document == "promptLibraryNCS":
meanings = """
Exemple de requêtes sur la note sectorielle : traitement statistique et génération des codes des objets de datavisualisation\nQuestion1 : donne le dataframe des appellations métiers et de leur pourcentage.\nQuestion2 : donne le plotly.js du dataframe avec les labels des appellations métiers et les labels des pourcentages.\nQuestion3 : convertis en plotly.js au format javascript\nQuestion4 : donne les salaires moyens.\nQuestion5 : donne le résultat des salaires moyens par appellations métiers dans un tableau.\nQuestion6 : donne le plotly du tableau des salaires moyens par appellation métier.\nQuestion7 : convertis en plotly.js au format javascript avec les labels des salaires moyens et les labels des appellations métiers\nQuestion8 : donne le pourcentage des contrats en CDI.\nQuestion9 : donne le résultat dans un tableau\nQuestion10 : donne le plotly du tableau\nQuestion11 : convertis le plotly en plotly.js au format javascript, avec affichage de tous les labels.\nQuestion12 : donne les 10 compétences professionnelles principales avec leur pourcentage.\nQuestion13 : donne le résultat dans un tableau.\nQuestion14 : donne le plotly du tableau\nQuestion15 : convertis le plotly en plotly.js au format javascript, avec affichage de tous les labels.\nQuestion16 : quelles sont les appellations métiers accessibles selon une expérience débutant, en donnant un pourcentage?\nQuestion17 : donne le résultat dans un tableau.\nQuestion18 : donne le plotly du tableau.\nQuestion19 : convertis le plotly en plotly.js au format javascript, avec affichage de tous les labels.\nQuestion20 : quelles sont les appellations métiers accessibles selon un niveau de qualification jusqu'à Bac+2 ou assimilés, en donnant un pourcentage?\nQuestion21 : donne le résultat dans un tableau.\nQuestion22 : donne le plotly du tableau\nQuestion23 : convertis le plotly en plotly.js au format javascript, avec affichage de tous les labels.\nQuestion24 : donne le pourcentage des appellations métiers en fonction des types d'entreprise.\nQuestion25 : construis le tableau en faisant une estimation.\nQuestion26 : donne le plotly du tableau estimé avec les pourcentage évalués par toi-même\nQuestion27 : convertis le plotly en plotly.js au format javascript, avec affichage de tous les labels, issus de votre estimation.
"""
elif document == "promptLibraryFCS":
meanings = """
Exemple de requêtes sur la fiche synoptique : construction d'un programme de formation complet\nQuestion1 : crée un programme de formation, en 4000 mots, sur 3 ans découpés en 6 semestres, comportant 3 blocs de compétences pédagogiques, dont les intitulés commencent par un verbe d'action, par semestre correspondant à 3 unités d'enseignement par semestre et 3 cours par unité d'enseignement, en corrélation avec les activités professionnelles et les compétences professionnelles de la fiche synoptique, marquant une progression dans les apprentissages.\nQuestion2 : donne le synopsis du cours1 de l'UE1\nQuestion3 : plus?\nQuestion4 : et les supports pédagogiques?
"""
return meanings
def listToString(list):
return str(list)
def arrayToString(array):
arrayList = []
for i in range(0,len(array)):
if listToString(array[i]).find("libelle")!=-1:
arrayList.append(array[i]['libelle'])
else:
arrayList.append("; ")
string = ', '.join(arrayList)
return string + '; '
def searchByRome(rome,index):
libelle = ''
if rome.find(',') != -1:
romeArray = rome.split(',')
for i in range(0,len(romeArray)):
codeRome = romeArray[i].strip()
if i <= 5 and len(codeRome) == 5:
all_docs = index.query(
top_k=1,
vector= [0] * 768, # embedding dimension
namespace='',
filter={"categorie": {"$eq": "rome"}, "rome":{"$eq": codeRome}},
include_metadata=True
)
libelle = libelle + " " + all_docs['matches'][0]['metadata']['libelle_rome']
else:
all_docs = index.query(
top_k=1,
vector= [0] * 768, # embedding dimension
namespace='',
filter={"categorie": {"$eq": "rome"}, "rome":{"$eq": rome}},
include_metadata=True
)
libelle = libelle + " " + all_docs['matches'][0]['metadata']['libelle_rome']
return libelle
@cl.author_rename
def rename(orig_author: str):
rename_dict = {"ConversationalRetrievalChain": "💬 Assistant conversationnel", "Retriever": "Agent conversationnel", "StuffDocumentsChain": "Chaîne de documents", "LLMChain": "Agent", "ChatAnthropic": "IA 🤖"}
return rename_dict.get(orig_author, orig_author)
@cl.action_callback("download")
async def on_action(action):
content = []
content.append(action.value)
arrayContent = np.array(content)
df = pd.DataFrame(arrayContent)
with open('./' + action.description + '.txt', 'wb') as csv_file:
df.to_csv(path_or_buf=csv_file, index=False,header=False, encoding='utf-8')
elements = [
cl.File(
name= action.description + ".txt",
path="./" + action.description + ".txt",
display="inline",
),
]
await cl.Message(
author="Datapcc : 🌐🌐🌐", content="[Lien] 🔗", elements=elements
).send()
await action.remove()
@cl.action_callback("saveToMemory")
async def on_action(action):
buffer = cl.user_session.get("saveMemory")
cl.user_session.set("saveMemory", buffer + action.value)
await cl.Message(
author="Datapcc : 🌐🌐🌐", content="🗃️ Document sauvegardé dans le buffer Memory!"
).send()
await action.remove()
@cl.cache
def to_cache(file):
#time.sleep(5) # Simulate a time-consuming process
return "https://cipen.univ-gustave-eiffel.fr/fileadmin/CIPEN/datas/assets/docs/" + file + ".csv"
@cl.set_chat_profiles
async def chat_profile():
return [
cl.ChatProfile(name="Note composante sectorielle - NCS",markdown_description="Note composante sectorielle",icon="./public/favicon.png",),
]
@cl.on_chat_start
async def start():
await cl.Avatar(
name="You",
path="./public/logo-ofipe.jpg",
).send()
chat_profile = cl.user_session.get("chat_profile")
chatProfile = chat_profile.split(' - ')
if chatProfile[1] == 'NCS':
app_user = cl.user_session.get("user")
welcomeUser = app_user.identifier
welcomeUserArray = welcomeUser.split('@')
welcomeUserStr = welcomeUserArray[0].replace('.',' ')
await cl.Message(f"> Bonjour {welcomeUserStr}").send()
valuesRome = []
valuesRome = ["", "M1302 - DU entrepreneuriat", "F1102,B1301 - LP Chargé.e d'Affaires en Agencement (CAA)", "M1502,M1503 - LP Gestion Opérationnelles des Ressources Humaines", "K1902 - LP Management et Droits des Affaires Immobilières"]
cl.user_session.set("arraySettingsRome", valuesRome)
settings = await cl.ChatSettings(
[
Select(
id="rome",
label="Codes Rome",
values=valuesRome,
initial_index=0,
),
TextInput(id="romeInput", label="ou saisir une liste de codes ROME jusqu'à 5 codes", placeholder="ou saisir une liste de codes ROME jusqu'à 5 codes", tooltip="saisir une liste de codes Rome séparés par des virgules, jusqu'à 5 codes ROME"),
Select(
id="type",
label="Type de fiche",
values=["", "Note de composante sectorielle - NCS", "Fiche synoptique - FCS", "Fiche Potentiel Profil de Sortie - FPPS", "Fiche activité - FCA", "Fiche compétence - FCC", "Module de formation - cours - MDF", "Matrice de cohérences - MDC", "Référentiel d'évaluation - REV"],
initial_index=0,
),
]
).send()
value = settings["rome"]
if len(value) < 2:
warning = [
cl.Image(name="Warning", size="small", display="inline", path="./public/warning.png")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="1️⃣ Cliquez sur le bouton dont l'image suit, dans le prompt, pour commencer à élaborer un premier texte de la chaîne documentaire APCC!").send()
await cl.Message(author="Datapcc : 🌐🌐🌐",content="", elements=warning).send()
await cl.Message(author="Datapcc : 🌐🌐🌐",content="2️⃣ Puis sélectionnez ou saisissez un ou plusieurs codes ROME et un type de fiche dans les menus déroulants proposés. Et vous êtes prêt!\n\n🔗 Plateforme de feedback et de fil d'activité : https://cloud.getliteral.ai/").send()
#os.environ['ANTHROPIC_API_KEY'] = os.environ['ANTHROPIC_API_KEY']
contextChat = cl.user_session.get("contextChatBot")
if not contextChat:
contextChat = "Il n'y a pas de contexte."
model = ChatAnthropic(
temperature=1,
model_name="claude-3-opus-20240229"
)
cl.user_session.set("memory", ConversationBufferMemory(return_messages=True))
memory = cl.user_session.get("memory")
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
f"Contexte : Vous êtes un spécialiste du marché de l'emploi en fonction du niveau de qualification, des compétences professionnelles, des compétences transversales, du salaire et de l'expérience. Vous êtes doué pour faire des analyses du système travail sur les métiers les plus demandés grâce à votre aptitude à synthétiser les informations en fonction des critères définis ci-avant. En fonction des informations suivantes et du contexte suivant seulement et strictement. Contexte : {contextChat}. Réponds à la question suivante de la manière la plus pertinente, la plus exhaustive et la plus détaillée possible, avec au minimum 3000 tokens jusqu'à 4000 tokens, seulement et strictement dans le contexte et les informations fournies. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies.",
),
MessagesPlaceholder(variable_name="history"),
("human", "{question}, dans le contexte fourni."),
]
)
runnable = (
RunnablePassthrough.assign(
history=RunnableLambda(memory.load_memory_variables) | itemgetter("history")
)
| prompt
| model
| StrOutputParser()
)
cl.user_session.set("runnable", runnable)
@literal_client.step(type="run")
async def construction_REV(romeListArray,settings):
if cl.user_session.get("FCS" + romeListArray[0]) and cl.user_session.get("allskills"):
getChain = await recuperation_contexte("FCS" + romeListArray[0])
getChainSkills = await recuperation_contexte("allskills")
client_anthropic = await IA()
allcompetences = getChainSkills
question = f"En fonction du contexte qui suit. Contexte : fiche synoptique : {cl.user_session.get('FCS' + romeListArray[0])}. Liste des compétences professionnelles : {allcompetences}. Crée un référentiel d'évaluation en fonction des compétences précédentes, sous la forme d'un tableau recensant les modalités d'évaluation, les compétences professionnelles et les critères d'évaluation, tu en déduiras un autre tableau en fonction des compétences professionnelles précédentes et des compétences transversales correspondantes, exploitable dans le logiciel Excel, en respectant tous les intitulés, en langue française seulement et exclusivement, en 4000 mots. Réponds et restitue le référentiel d'évaluation au format tableau."
completion_REV = client_anthropic.messages.create(
model="claude-3-opus-20240229",
max_tokens=4000,
temperature=1,
messages=[{
"role": 'user', "content": f"Réponds à la question suivante en utilisant seulement le contexte ci-contre. Réponds à la manière d'un ingénieur pédagogique pour créer un référentiel. Si vous ne pouvez pas répondre à la question sur la base des informations, dites que vous ne trouvez pas de réponse ou que vous ne parvenez pas à trouver de réponse. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies. Ne générez pas de réponses non pertinentes. Si les informations fournies dans le contexte ne sont pas suffisantes, fais une projection sur les modalités d'évaluation, les critères d'évaluation, pour construire le référentiel d'évaluation. Questions : {question}"
}]
)
await cl.sleep(3)
await cl.Message(
author="Datapcc : 🌐🌐🌐",content="Référentiel d'évaluation :\n\n" + completion_REV.content[0].text
).send()
cl.user_session.set("REV" + romeListArray[0], completion_REV.content[0].text)
cl.user_session.set("contextChatBot", completion_REV.content[0].text)
await cl.sleep(2)
actions = [
cl.Action(name="download", value=completion_REV.content[0].text, description="download_referentiel_evaluation")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger le référentiel", actions=actions).send()
await cl.sleep(2)
saves = [
cl.Action(name="saveToMemory", value=completion_REV.content[0].text, description="Mettre en mémoire le référentiel")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Mettre en mémoire le référentiel", actions=saves).send()
await cl.sleep(2)
if not cl.user_session.get("saveMemory"):
cl.user_session.set("saveMemory", "")
memories = [
cl.Action(name="download", value=cl.user_session.get('saveMemory'), description="download_referentiel")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger la mise en mémoire de vos fiches", actions=memories).send()
else:
await cl.Message(
author="Datapcc : 🌐🌐🌐",content="⛔ Vous n'avez pas encore créé de Fiche synoptique!"
).send()
return "Construction du Référentiel d'Evaluation"
@literal_client.step(type="run")
async def construction_MDC(romeListArray,settings):
if cl.user_session.get("FCS" + romeListArray[0]) and cl.user_session.get("allskills") and cl.user_session.get("MDF" + romeListArray[0]):
await recuperation_contexte("FCS" + romeListArray[0])
getChainSkills = await recuperation_contexte("allskills")
getChainMDF = await recuperation_contexte("MDF" + romeListArray[0])
client_anthropic = await IA()
allcompetences = getChainSkills
allmodules = getChainMDF
question = f"En fonction du contexte qui suit. Contexte : liste des compétences professionnelles : {allcompetences}. Liste des modules de formation et des cours : {allmodules}. Déduis une matrice de cohérences en corrélation des modules de formation, des cours précédents et des compétences professionnelles précédentes ci-avant, sous la forme d'un tableau à double entrée, exploitable dans le logiciel Excel, en respectant tous les intitulés, et rempli par des coches entre les modules, les cours et les compétences professionnelles correspondantes, en langue française seulement et exclusivement, en 4000 mots. Réponds et restitue la matrice de cohérences au format tableau avec des lignes correspondant aux modules de formation et aux cours et des colonnes avec des titres de colonne correspondant aux compétences professionnelles, et pour finir des cellules avec les coches X montrant la corrélation entre les modules, les cours et les compétences professionnelles."
completion_MDC = client_anthropic.messages.create(
model="claude-3-opus-20240229",
max_tokens=4000,
temperature=1,
messages=[{
"role": 'user', "content": f"Réponds à la question suivante en utilisant seulement le contexte ci-contre. Réponds à la manière d'un ingénieur pédagogique pour créer un référentiel. Si vous ne pouvez pas répondre à la question sur la base des informations, dites que vous ne trouvez pas de réponse ou que vous ne parvenez pas à trouver de réponse. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies. Ne générez pas de réponses non pertinentes. Si les informations du contexte sont insuffisantes, procédez quand même à une estimation et donc à une projection sur les liens entre les modules de formation et les compétences, pour construire la matrice de cohérences. Questions : {question}"
}]
)
await cl.sleep(3)
await cl.Message(
author="Datapcc : 🌐🌐🌐",content="Matrice de cohérences :\n\n" + completion_MDC.content[0].text
).send()
cl.user_session.set("MDC" + romeListArray[0], completion_MDC.content[0].text)
cl.user_session.set("contextChatBot", completion_MDC.content[0].text)
await cl.sleep(2)
actions = [
cl.Action(name="download", value=completion_MDC.content[0].text, description="download_matrice_coherence")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger la matrice", actions=actions).send()
await cl.sleep(2)
saves = [
cl.Action(name="saveToMemory", value=completion_MDC.content[0].text, description="Mettre en mémoire la matrice")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Mettre en mémoire la matrice", actions=saves).send()
await cl.sleep(2)
if not cl.user_session.get("saveMemory"):
cl.user_session.set("saveMemory", "")
memories = [
cl.Action(name="download", value=cl.user_session.get('saveMemory'), description="download_referentiel")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger la mise en mémoire de vos fiches", actions=memories).send()
else:
await cl.Message(
author="Datapcc : 🌐🌐🌐",content="⛔ Vous n'avez pas encore créé de Fiche synoptique!"
).send()
return "Construction de la Matrice de Cohérences"
@literal_client.step(type="run")
async def construction_MDF(romeListArray,settings):
if cl.user_session.get("FCS" + romeListArray[0]) and cl.user_session.get("allskills"):
getChainNCS = await recuperation_contexte("NCS" + romeListArray[0])
getChain = await recuperation_contexte("FCS" + romeListArray[0])
getChainSkills = await recuperation_contexte("allskills")
getChainActivities = await recuperation_contexte("allactivities")
client_anthropic = await IA()
allactivites = getChainActivities
allcompetences = getChainSkills
question = f"En fonction du contexte qui suit. Contexte : note de composante sectorielle : {getChainNCS} à partir de laquelle tu fais une déduction des niveaux d'études, de l'expérience professionnelle, des besoins de formation caractérisés ainsi que des objectifs à atteindre pendant ces formations. Liste des activités professionnelles : {allactivites}. Liste des compétences professionnelles : {allcompetences}. Public cible : de la note de composante sectorielle, donne les niveaux d'études requis en fonction des niveaux de qualification donnés dans la note de composante sectorielle. Déduis un ensemble de 10 modules de formations, en corrélation avec les compétences professionnelles précédentes, dont les intitulés seront très détaillés et très complèts, entrecoupés eux-mêmes de 5 cours, en langue française seulement et exclusivement, en 4000 mots. Réponds et restitue la réponse au format tableau de 10 lignes correspondant aux 10 compétences professionnelles et de 3 colonnes dont les intitulés du header sont les compétences professionnelles, les modules de formation et les cours associés."
completion_MDF = client_anthropic.messages.create(
model="claude-3-opus-20240229",
max_tokens=4000,
temperature=1,
messages=[{
"role": 'user', "content": f"Réponds à la question suivante en utilisant seulement le contexte détaillé ci-après. Réponds à la manière d'un ingénieur pédagogique pour créer un référentiel. Si les informations du contexte sont insuffisantes, crée approximativement les modules de formation et les cours tout en réalisant une estimation sur les intitulés, et tout en faisant une prédiction et donc une projection sur les objectifs pédagogiques, les besoins en compétences et en formation, les niveaux requis, les lacunes à combler, les méthodes pédagogiques et les objectifs d'apprentissage, pour construire les modules de formation. Questions : {question}"
}]
)
await cl.sleep(3)
await cl.Message(
author="Datapcc : 🌐🌐🌐",content="Modules de formations :\n\n" + completion_MDF.content[0].text
).send()
cl.user_session.set("MDF" + romeListArray[0], completion_MDF.content[0].text)
cl.user_session.set("contextChatBot", getChainSkills + "\n" + completion_MDF.content[0].text)
await cl.sleep(2)
actions = [
cl.Action(name="download", value=completion_MDF.content[0].text, description="download_module_formation")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger les modules", actions=actions).send()
await cl.sleep(2)
saves = [
cl.Action(name="saveToMemory", value=completion_MDF.content[0].text, description="Mettre en mémoire les modules")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Mettre en mémoire les modules", actions=saves).send()
await cl.sleep(2)
if not cl.user_session.get("saveMemory"):
cl.user_session.set("saveMemory", "")
memories = [
cl.Action(name="download", value=cl.user_session.get('saveMemory'), description="download_referentiel")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger la mise en mémoire de vos fiches", actions=memories).send()
else:
await cl.Message(
author="Datapcc : 🌐🌐🌐",content="⛔ Vous n'avez pas encore créé de Fiche synoptique!"
).send()
return "Construction des Modules de formation - Cours"
@literal_client.step(type="run")
async def construction_FCC(romeListArray,settings):
if cl.user_session.get("FCS" + romeListArray[0]) and (settings['competence'].find('--- Choisir une compétence ---')==-1 or settings['competenceInput']):
getChain = await recuperation_contexte("FCS" + romeListArray[0])
client_anthropic = await IA()
ficheSynoptique = getChain
if settings['competenceInput']:
competenceSingle = settings['competenceInput']
else:
competenceSingle = settings['competence']
question = f"En fonction de la compétence : {competenceSingle}, issue du document précédent correspondant à la fiche synoptique, crée une fiche compétence très détaillée et très complète de la compétence professionnelle précédente, en se fixant sur les mots de l'intitulé de cette même compétence professionnelle, en 3000 mots et 5 paragraphes comportant les paragraphes suivants : 1. description de la compétence et le processus de la mise en oeuvre dans laquelle seront identifiées les situations susceptibles de déclencher la mise en oeuvre des tâches et la mobilisation des savoirs, 2. contexte exposant les conditions et les contraintes d'exécution ainsi que les environnements techniques, 3. critères exposant les critères de réussite de l'action et correspondant à une pertinence une efficience une efficacité une cohérence, 4. liste des savoirs et savoir-faire et savoirs comportementaux."
completion_FCC = client_anthropic.messages.create(
model="claude-3-opus-20240229",
max_tokens=4000,
temperature=1,
messages=[{
"role": 'user', "content": f"Contexte : Réponds à la question suivante en utilisant seulement le contexte ci-contre. Réponds à la manière d'un ingénieur pédagogique pour créer un référentiel. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies. Contexte: Définition d'une compétence : la compétence est une combinaison de savoirs en action, mobilisés en vue de réaliser une activité professionnelle. Elle s'apprécie, en tant qu'acquis de l'apprentissage selon des modalités adaptées permettant d'en certifier la possession et au regard de l'atteinte d'un résultat pour un niveau d'exigence prédéterminé. Les compétences peuvent être regroupées par domaines selon la nature et leur liaison subordonnée aux activités. Elles s'écrivent à l'aide de verbe d'action à l'infinitif comme le stipule la taxonomie de Bloom pour marquer une progression dans l'exercice de la compétence. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies. Fiche synoptique : {ficheSynoptique}. Questions : {question}"
}]
)
await cl.sleep(3)
await cl.Message(
author="Datapcc : 🌐🌐🌐",content="Fiche compétence : " + competenceSingle + "\n\n" + completion_FCC.content[0].text
).send()
cl.user_session.set("FCC" + romeListArray[0], completion_FCC.content[0].text)
cl.user_session.set("contextChatBot", ficheSynoptique + "\n" + completion_FCC.content[0].text)
await cl.sleep(2)
actions = [
cl.Action(name="download", value=completion_FCC.content[0].text, description="download_fiche_competence")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger la fiche", actions=actions).send()
await cl.sleep(2)
saves = [
cl.Action(name="saveToMemory", value=completion_FCC.content[0].text, description="Mettre en mémoire la fiche")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Mettre en mémoire la fiche", actions=saves).send()
await cl.sleep(2)
if not cl.user_session.get("saveMemory"):
cl.user_session.set("saveMemory", "")
memories = [
cl.Action(name="download", value=cl.user_session.get('saveMemory'), description="download_referentiel")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger la mise en mémoire de vos fiches", actions=memories).send()
else:
await cl.Message(
author="Datapcc : 🌐🌐🌐",content="⛔ Vous n'avez pas encore créé de Fiche synoptique!"
).send()
return "Construction de la Fiche Compétence : " + competenceSingle
@literal_client.step(type="run")
async def construction_FCA(romeListArray,settings):
if cl.user_session.get("FCS" + romeListArray[0]) and (settings['activite'].find('--- Choisir une activité ---')==-1 or settings['activiteInput']):
getChain = await recuperation_contexte("FCS" + romeListArray[0])
client_anthropic = await IA()
ficheSynoptique = getChain
if settings['activiteInput']:
activiteSingle = settings['activiteInput']
else:
activiteSingle = settings['activite']
question = f"En fonction de l'activité : {activiteSingle}, issue du document précédent correspondant à la fiche synoptique, crée une fiche activité très détaillée et très complète de l'activité professionnelle précédente, en se fixant sur les mots de l'intitulé de cette même activité professionnelle, en 3000 mots et 5 paragraphes comportant les paragraphes suivants : 1. description de l'activité pour indiquer la finalité de l'activité en terme de service ou de produit, 2. description pour indiquer les étapes du processus métier en décrivant la combinatoire entre les principales compétences de l'activité et en indiquant les actions et les opérations avec les ressources et les moyens nécessaires pour finalement décrire les relations hiérarchiques et fonctionnelles des interlocuteurs, 3. contextualisation pour indiquer les conditions d'exercice de l'activité : lieu mobilité risques astreintes, 4. liste des compétences professionnelles de l'activité, 5. compétences transversales de l'activité."
completion_FCA = client_anthropic.messages.create(
model="claude-3-opus-20240229",
max_tokens=4000,
temperature=1,
messages=[{
"role": 'user', "content": f"Contexte : Réponds à la question suivante en utilisant seulement le contexte ci-contre. Réponds à la manière d'un ingénieur pédagogique pour créer un référentiel. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies. Contexte: Définition d'une activité : une activité est un ensemble cohérent d'actions combinées : pour la réaliser, plusieurs compétences et opérations sont nécessaires, soit successivement, soit conjointement. Elles s'inscrivent à des moments clés du processus de réalisation et ne peuvent en aucun cas être occultées, car elles conditionnent le résultat. Plusieurs activités en vue d'une finalité avec une valeur ajoutée à un produit ou un service sont nécessaires pour mettre en œuvre un processus métier. De ce fait, il est essentiel de déterminer pour chaque activité sa propre finalité et de s'assurer que l'ensemble des activités participent bien d'un même processus. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies. Fiche synoptique : {ficheSynoptique}. Questions : {question}"
}]
)
await cl.sleep(3)
await cl.Message(
author="Datapcc : 🌐🌐🌐",content="Fiche activité : " + activiteSingle + "\n\n" + completion_FCA.content[0].text
).send()
cl.user_session.set("FCA" + romeListArray[0], completion_FCA.content[0].text)
cl.user_session.set("contextChatBot", ficheSynoptique + "\n" + completion_FCA.content[0].text)
await cl.sleep(2)
actions = [
cl.Action(name="download", value=completion_FCA.content[0].text, description="download_fiche_activite")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger la fiche", actions=actions).send()
await cl.sleep(2)
saves = [
cl.Action(name="saveToMemory", value=completion_FCA.content[0].text, description="Mettre en mémoire la fiche")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Mettre en mémoire la fiche", actions=saves).send()
await cl.sleep(2)
if not cl.user_session.get("saveMemory"):
cl.user_session.set("saveMemory", "")
memories = [
cl.Action(name="download", value=cl.user_session.get('saveMemory'), description="download_referentiel")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger la mise en mémoire de vos fiches", actions=memories).send()
else:
await cl.Message(
author="Datapcc : 🌐🌐🌐",content="⛔ Vous n'avez pas encore créé de Fiche synoptique!"
).send()
return "Construction de la Fiche Activité" + activiteSingle
@literal_client.step(type="run")
async def construction_FPPS(romeListArray,settings):
if cl.user_session.get("NCS" + romeListArray[0]) and cl.user_session.get("FCS" + romeListArray[0]):
goFPPS1 = await cl.AskUserMessage(content="A partir de quelle formation, voulez-vous construire la Fiche Potentiel et Profil de Sortie?", timeout=120).send()
if goFPPS1:
goFPPS2 = await cl.AskUserMessage(content="A partir de quel(s) code(s) ROME, voulez-vous construire la Fiche Potentiel et Profil de Sortie?", timeout=120).send()
if goFPPS2:
docsearch = await vectorOFDatabase_connexion()
retrieve = docsearch.similarity_search(goFPPS1['output'], k=5, filter={'categorie': {'$eq': 'OF'}})
infoFormation = ''
for i in range(0,len(retrieve)):
infoFormation += '\n' + retrieve[i].page_content
noteSectorielle = await recuperation_contexte("NCS" + romeListArray[0])
ficheSynoptique = await recuperation_contexte("FCS" + romeListArray[0])
intituleFormation = goFPPS1['output']
codesRome = goFPPS2['output']
client_anthropic = await IA()
question =f"En fonction du contexte intégrant les descriptifs de formation, la note de composante sectorielle et la fiche synoptique, crée une fiche Potentiel Profil de Sortie sous forme d'une fiche descriptive très détaillée et très complète, construite d'après le modèle et la structure de document suivante. Structure de document : {str(modele('Fiche Potentiel Profil de Sortie'))}"
completion_FPPS = client_anthropic.messages.create(
model="claude-3-opus-20240229",
max_tokens=4000,
temperature=1,
messages=[{
"role": 'user', "content": f"Contexte : Réponds à la question suivante en utilisant le contexte ci-contre. Réponds à la manière d'un ingénieur pédagogique pour créer un référentiel. Essayez donc de comprendre en profondeur le contexte et répondez en vous basant sur les informations fournies. Contexte: Descriptifs de formation : {infoFormation}. Note de composante sectorielle : {noteSectorielle}. Fiche Synoptique : {ficheSynoptique}. Intitulé de la formation : {intituleFormation}. Codes ROME : {codesRome}. Questions : {question}"
}]
)
completionFPPS = completion_FPPS.content[0].text
await cl.sleep(0.5)
await cl.Message(
author="Datapcc : 🌐🌐🌐",content="Fiche Potentiel Profil de sortie : " + romeListArray[1] + "\n\n" + completion_FPPS.content[0].text
).send()
cl.user_session.set("FPPS" + romeListArray[0], completion_FPPS.content[0].text)
cl.user_session.set("contextChatBot", "Note sectorielle" + noteSectorielle + "\nFiche syoptique" + ficheSynoptique + "\nFiche Potentiel Profil de sortie" + completion_FPPS.content[0].text)
await cl.sleep(1)
actions = [
cl.Action(name="download", value=completion_FPPS.content[0].text, description="download_fiche_synoptique")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger la fiche", actions=actions).send()
await cl.sleep(1)
saves = [
cl.Action(name="saveToMemory", value=completion_FPPS.content[0].text, description="Mettre en mémoire la fiche")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Mettre en mémoire la fiche", actions=saves).send()
await cl.sleep(1)
memories = [
cl.Action(name="download", value=cl.user_session.get('saveMemory'), description="download_referentiel")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger la mise en mémoire de vos fiches", actions=memories).send()
else:
await cl.Message(
author="Datapcc : 🌐🌐🌐",content="⛔ Vous n'avez pas encore créé de Note sectorielle ou de Fiche Synoptique!"
).send()
return "Construction de la Fiche Potentiel Profil de Sortie"
@literal_client.step(type="run")
async def construction_FCS(romeListArray,settings):
if cl.user_session.get("NCS" + romeListArray[0]):
goFCS = await cl.AskActionMessage(
content="Voulez-vous téléverser votre propre document de Note sectorielle?",
actions=[
cl.Action(name="continue", value="continue", label="✅ Oui, je veux charger ma note sectorielle pour modifier le contexte"),
cl.Action(name="cancel", value="cancel", label="❌ Non, je veux continuer avec la version du contexte en cours"),
],
).send()
if goFCS and goFCS.get("value") == "continue":
files = None
while files == None:
files = await cl.AskFileMessage(
content="Télécharger votre document de note sectorielle (⚠️ Attention, le contexte initial sera modifié!)", accept=["text/plain", "application/pdf"],max_size_mb=2
).send()
text_file = files[0]
text_file_string = process_file(text_file)
text_file_string = text_file_string[0].page_content
cl.user_session.set("NCS" + romeListArray[0], str(text_file_string))
getChain = "NCS" + romeListArray[0] + " : " + str(text_file_string)
else:
getChain = await recuperation_contexte("NCS" + romeListArray[0])
client_anthropic = await IA()
question ="""
1) Extrais de la note de composante sectorielle du contexte, seulement et strictement la liste des 5 appellations métiers principales et écris-la au format liste formée de 5 lignes de ces mêmes métiers, sans phrase d'introduction de type \"Voici...\" et sans y apporter plus de précision quant à la génération de la note de composante sectorielle; la liste devant se termniner par la dernière appellation métier.
2) En fonction des 5 appellations métiers du secteur listées dans le document précédent correspondant à la note de composante sectorielle, crée une fiche synoptique sous forme d'une fiche descriptive très détaillée et très complète, en 5000 mots, comprenant une liste numérotées de 5 activités professionnelles différentes bien décrites, entrecoupées elles-mêmes par une sous-liste numérotées, imbriquée dans chaque liste activité professionnelle, de 5 compétences professionnelles distinctes et bien décrites commençant par un verbe d'action conformément à la taxonomie de Bloom, marquant une progression dans l'acquisition des compétences.
3) Extrais de la fiche synoptique créée, seulement et strictement la liste des 25 premières activités professionnelles principales et écris-la sur une seule ligne construite de ces mêmes 10 activités séparées par des points virgules, sans phrase d'introduction de type \"Voici...\" et sans y apporter plus de précision quant à la génération de la fiche synoptique; la ligne devant commencer par \"activités : --- Choisir une activité --- ; \" et devant se termniner par la dernière activité professionnelle.
4) Extrais de la fiche synoptique créée, seulement et strictement la liste des 25 premières compétences professionnelles principales et écris-la sur une seule ligne construite de ces mêmes 10 compétences séparées par des points virgules, sans phrase d'introduction de type \"Voici...\" et sans y apporter plus de précision quant à la génération de la fiche synoptique; la ligne devant commencer par \"compétences : --- Choisir une compétence --- ; \" et devant se termniner par la dernière compétence professionnelle.
"""
completion_FCS = client_anthropic.messages.create(
model="claude-3-opus-20240229",
max_tokens=4000,
temperature=1,
messages=[{
"role": 'user', "content": f"Contexte : Réponds aux questions suivantes en utilisant seulement le contexte ci-contre. Réponds à la manière d'un ingénieur pédagogique pour créer un référentiel. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies. Contexte: Définition d'une activité : une activité est un ensemble cohérent d'actions combinées : pour la réaliser, plusieurs compétences et opérations sont nécessaires, soit successivement, soit conjointement. Elles s'inscrivent à des moments clés du processus de réalisation et ne peuvent en aucun cas être occultées, car elles conditionnent le résultat. Plusieurs activités en vue d'une finalité avec une valeur ajoutée à un produit ou un service sont nécessaires pour mettre en œuvre un processus métier. De ce fait, il est essentiel de déterminer pour chaque activité sa propre finalité et de s'assurer que l'ensemble des activités participent bien d'un même processus. Définition d'une compétence : la compétence est une combinaison de savoirs en action, mobilisés en vue de réaliser une activité professionnelle. Elle s'apprécie, en tant qu'acquis de l'apprentissage selon des modalités adaptées permettant d'en certifier la possession et au regard de l'atteinte d'un résultat pour un niveau d'exigence prédéterminé. Les compétences peuvent être regroupées par domaines selon la nature et leur liaison subordonnée aux activités. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies. Note de composante sectorielle : {getChain}. Questions : {question}"
}]
)
completionFCS = completion_FCS.content[0].text
await cl.sleep(2)
arrayActivites = completionFCS.split('activités : ')
arrayOfActivites = arrayActivites[1].split('compétences : ')
arrayOfCompetences = completionFCS.split('compétences : ')
arrayOfRome = np.array(cl.user_session.get("arraySettingsRome"))
if settings['rome']:
indexOfRome = np.where(arrayOfRome==settings['rome'])[0][0]
else:
indexOfRome = 0
settings = await cl.ChatSettings(
[
Select(
id="rome",
label="Codes Rome",
values=["", "M1302 - DU entrepreneuriat", "F1102,B1301 - LP Chargé.e d'Affaires en Agencement (CAA)", "M1502,M1503 - LP Gestion Opérationnelles des Ressources Humaines", "K1902 - LP Management et Droits des Affaires Immobilières"],
initial_index=indexOfRome,
),
TextInput(id="romeInput", label="ou saisir une liste de codes ROME jusqu'à 5 codes", initial=settings['romeInput'], placeholder="ou saisir une liste de codes ROME jusqu'à 5 codes", tooltip="saisir une liste de codes Rome séparés par des virgules, jusqu'à 5 codes ROME"),
Select(
id="type",
label="Type de fiche",
values=["", "Note de composante sectorielle - NCS", "Fiche synoptique - FCS", "Fiche Potentiel Profil de Sortie - FPPS", "Fiche activité - FCA", "Fiche compétence - FCC", "Module de formation - cours - MDF", "Matrice de cohérences - MDC", "Référentiel d'évaluation - REV"],
initial_index=2,
),
Select(
id="activite",
label="Activites",
values=arrayOfActivites[0].split(';'),
initial_index=0,
),
TextInput(id="activiteInput", label="ou saisir une activité", placeholder="ou saisir une activité", tooltip="saisir votre propre activité professionnelle pour en avoir un descriptif détaillé"),
Select(
id="competence",
label="Competences",
values=arrayOfCompetences[1].split(';'),
initial_index=0,
),
TextInput(id="competenceInput", label="ou saisir une compétence", placeholder="ou saisir une compétence", tooltip="saisir votre propre compétence professionnelle pour en avoir un descriptif détaillé"),
]
).send()
await cl.sleep(3)
await cl.Message(
author="Datapcc : 🌐🌐🌐",content="Fiche synoptique : " + romeListArray[1] + "\n\n" + completion_FCS.content[0].text
).send()
cl.user_session.set("FCS" + romeListArray[0], completion_FCS.content[0].text)
cl.user_session.set("contextChatBot", getChain + "\n" + completion_FCS.content[0].text)
await cl.sleep(2)
listPrompts_name = f"Liste des requêtes sur la fiche synoptique"
prompt_elements = []
prompt_elements.append(
cl.Text(content=definition('promptLibraryFCS'), name=listPrompts_name)
)
await cl.Message(author="Datapcc : 🌐🌐🌐",content="📚 Bibliothèque de prompts : " + listPrompts_name, elements=prompt_elements).send()
await cl.sleep(2)
actions = [
cl.Action(name="download", value=completion_FCS.content[0].text, description="download_fiche_synoptique")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger la fiche", actions=actions).send()
await cl.sleep(2)
saves = [
cl.Action(name="saveToMemory", value=completion_FCS.content[0].text, description="Mettre en mémoire la fiche")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Mettre en mémoire la fiche", actions=saves).send()
await cl.sleep(2)
memories = [
cl.Action(name="download", value=cl.user_session.get('saveMemory'), description="download_referentiel")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger la mise en mémoire de vos fiches", actions=memories).send()
await cl.sleep(2)
cl.user_session.set("allactivities", arrayOfActivites[0])
cl.user_session.set("allskills", arrayOfCompetences[1])
else:
await cl.Message(
author="Datapcc : 🌐🌐🌐",content="⛔ Vous n'avez pas encore créé de Note sectorielle!"
).send()
return "Construction de la Fiche Synoptique"
@literal_client.step(type="run")
async def construction_NCS(romeListArray):
context = await contexte(romeListArray)
emploisST = cl.user_session.get("EmploiST")
### Anthropic Completion ###
client_llm = await IA()
structure = str(modele('Note de composante sectorielle'))
definitions = definition('activite') + ' ' + definition('competence')
template = """<s>[INST] Vous êtes un spécialiste du marché de l'emploi en fonction du niveau de qualification, des compétences professionnelles, des compétences transversales, du salaire et de l'expérience. Vous êtes doué pour faire des analyses du système travail sur les métiers les plus demandés grâce à votre aptitude à synthétiser les informations en fonction des critères définis ci-avant.
En fonction des informations suivantes et du contexte suivant seulement et strictement, répondez à la question ci-dessous à partir du contexte ci-dessous :
{context}
{question} [/INST] </s>
"""
question_p ="""
Peux-tu créer une note sectorielle d'après le modèle de note sectorielle précédent en respectant ses parties : 2., 2.1, 2.1.1, 2.2, 2.2.1, 2.2.2, 2.2.3 et d'après le contexte en vous réferrant strictement aux données du contexte fixé? Réponse sous forme d'un texte généré d'après le modèle et le contexte en 5000 mots et en langue française absolument.
"""
context_p = f"Contexte : {context}. {definitions} Modèle de note sectorielle : {structure}. Réponds en langue française strictement à la question suivante en respectant strictement les données du contexte. Si vous ne pouvez pas répondre à la question sur la base des informations, dites que vous ne trouvez pas de réponse ou que vous ne parvenez pas à trouver de réponse. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies. Ne générez pas de réponses non pertinentes. Si les informations du contexte sont insuffisantes, procédez à une projection sur le secteur, les entreprises et le marché de l'emploi, pour construire la note de composante sectorielle."
prompt = PromptTemplate(template=template, input_variables=["question","context"])
#llm_chain = LLMChain(prompt=prompt, llm=client_llm)
#completion_NCS = llm_chain.run({"question":question_p,"context":context_p}, callbacks=[StreamingStdOutCallbackHandler()])
chain = prompt | client_llm
#completion_NCS = chain.invoke({"question":question_p,"context":context_p})
msg = cl.Message(author="Datapcc : 🌐🌐🌐",content="")
async for chunk in chain.astream({"question":question_p,"context":context_p}):
await msg.stream_token(chunk)
#for s in chain.stream({"question":question_p,"context":context_p}):
# print(s, end="", flush=True)
#completion_NCS = client_anthropic.messages.create(
# model="claude-3-opus-20240229",
# max_tokens=4000,
# temperature=1,
# messages=[{
# "role": 'user', "content": f"Contexte : Vous êtes un spécialiste du marché de l'emploi en fonction du niveau de qualification, des compétences professionnelles, des compétences transversales, du salaire et de l'expérience. Vous êtes doué pour faire des analyses du système travail sur les métiers les plus demandés grâce à votre aptitude à synthétiser les informations en fonction des critères définis ci-avant. En fonction des informations suivantes et du contexte suivant seulement et strictement. Contexte : {context}. {definitions} Modèle de note sectorielle : {structure}. Réponds en langue française strictement à la question suivante en respectant strictement les données du contexte. Si vous ne pouvez pas répondre à la question sur la base des informations, dites que vous ne trouvez pas de réponse ou que vous ne parvenez pas à trouver de réponse. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies. Ne générez pas de réponses non pertinentes. Si les informations du contexte sont insuffisantes, procédez à une projection sur le secteur, les entreprises et le marché de l'emploi, pour construire la note de composante sectorielle. Question : {question}"
# }]
#)
#await cl.sleep(2)
#await cl.Message(
# author="Datapcc : 🌐🌐🌐",content="Note de composante sectorielle de(s) code(s) ROME : " + romeListArray[0] + "\n\n" + completion_NCS
#).send()
cl.user_session.set("NCS" + romeListArray[0], msg.content)
cl.user_session.set("contextChatBot", context + "\n" + msg.content)
await cl.sleep(2)
listEmplois_name = f"Liste des emplois"
text_elements = []
text_elements.append(
cl.Text(content="Question : " + romeListArray[0] + "\n\nRéponse :\n" + emploisST.replace('Emploi : ','\n✔️ Emploi : ').replace('Contrat : ','\nContrat : ').replace('Compétences professionnelles : ','\nCompétences professionnelles : ').replace('Salaire : ','\nSalaire : ').replace('Qualification : ','\nQualification : '), name=listEmplois_name)
)
await cl.Message(author="Datapcc : 🌐🌐🌐",content="👨💼 Source Pôle Emploi : " + listEmplois_name, elements=text_elements).send()
await cl.sleep(2)
if romeListArray[0].find(',') != -1:
codeArray = romeListArray[0].split(',')
ficheMetiers = []
for i in range(0,len(codeArray)):
ficheMetiers = [
cl.File(name= "Fiche métier " + codeArray[i],url="https://candidat.francetravail.fr/marche-du-travail/fichemetierrome.blocficherome.telechargerpdf?codeRome=" + codeArray[i],display="inline",)
]
await cl.Message(
author="Datapcc : 🌐🌐🌐", content="[Fiches métiers] 🔗", elements=ficheMetiers
).send()
else:
ficheMetiers = [
cl.File(name= "Fiche métier " + romeListArray[0],url="https://candidat.francetravail.fr/marche-du-travail/fichemetierrome.blocficherome.telechargerpdf?codeRome=" + romeListArray[0],display="inline",)
]
await cl.Message(
author="Datapcc : 🌐🌐🌐", content="[Fiches métiers] 🔗", elements=ficheMetiers
).send()
await cl.sleep(2)
listPrompts_name = f"Liste des requêtes sur la note sectorielle"
prompt_elements = []
prompt_elements.append(
cl.Text(content=definition('promptLibraryNCS'), name=listPrompts_name)
)
await cl.Message(author="Datapcc : 🌐🌐🌐",content="📚 Bibliothèque de prompts : " + listPrompts_name, elements=prompt_elements).send()
await cl.sleep(2)
actions = [
cl.Action(name="download", value=msg.content, description="download_note_sectorielle")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger la note", actions=actions).send()
await cl.sleep(2)
saves = [
cl.Action(name="saveToMemory", value=msg.content, description="Mettre en mémoire la note")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Mettre en mémoire la note", actions=saves).send()
await cl.sleep(2)
return "Construction de la Note Sectorielle"
@cl.step(type="run")
async def recuperation_contexte(getNote):
getContext = cl.user_session.get(getNote)
return getNote + " :\n" + getContext
@cl.step(type="retrieval")
async def contexte(romeListArray):
results = await API_connexion(romeListArray)
index = await vectorDatabase_connexion()
emplois = []
for i in range(0,len(results)):
if i == 0:
emplois.append("Secteur : " + searchByRome(romeListArray[0],index) + " " + romeListArray[1])
else:
emplois.append("\nEmploi : " + results[i]['intitule'] + "; Contrat : " + results[i]['typeContrat'] + "; Compétences professionnelles : " + arrayToString(results[i]['competences']) if listToString(results[i]).find("'competences':")!=-1 else "; " + "Salaire : " + listToString(results[i]['salaire']) + "; Qualification : " + results[i]['qualificationLibelle'] if listToString(results[i]).find("'qualificationLibelle':")!=-1 else "; " + "; Localisation : " + listToString(results[i]['lieuTravail']) + "; Entreprise : " + listToString(results[i]['entreprise']['nom']) if listToString(results[i]['entreprise']).find("'nom':")!=-1 else "; ")
emplois_list = ''.join(emplois)
context = emplois_list.replace('[','').replace(']','').replace('{','').replace('}','')
ficheMetier = await Fiche_metier("https://candidat.francetravail.fr/marche-du-travail/fichemetierrome.blocficherome.telechargerpdf?codeRome=", romeListArray[0])
ficheMetiersCompetencesSavoirs = await Fiche_metier_competences_savoirs(romeListArray[0])
#metierSecteurContexteTravail = await Metier_secteur_contexte_travail(romeListArray[0])
cl.user_session.set("EmploiST", context)
return "Fiche métier Compétences Savoirs :\n" + ficheMetiersCompetencesSavoirs + "\nListe des emplois issus de France Travail :\n" + context
#return "Fiche métier Compétences Savoirs :\n" + ficheMetiersCompetencesSavoirs + "\nMetier secteur contexte au travail :\n" + metierSecteurContexteTravail + "\nListe des emplois issus de France Travail :\n" + context
#return "Liste des emplois issus de France Travail :\n" + context
#return "\nMetier secteur contexte au travail :\n" + metierSecteurContexteTravail + "\nListe des emplois issus de France Travail :\n" + context
@cl.step(type="tool")
async def Metier_secteur_contexte_travail(codes):
payload = {
'grant_type': 'client_credentials',
'client_id': 'PAR_datalabapc_54c735e1b592af9d016cf0e45f8973082303609fc997f0821a9b308c07995251',
'client_secret': 'b968556f8b4bf2c42af42498304bab0d76edcef23ed4723bbd621ae317a6657e',
'scope': 'api_rome-metiersv1'
}
r = requests.post("https://entreprise.pole-emploi.fr/connexion/oauth2/access_token?realm=/partenaire",
headers={"Content-Type":"application/x-www-form-urlencoded"},
data=payload)
data = "[" + r.content.decode("utf-8") + "]"
load_json = json.loads(data)
token = next(d['access_token'] for d in load_json if d['scope'] == 'api_rome-metiersv1')
conn = http.client.HTTPSConnection("api.pole-emploi.io")
headers = {
'Authorization': "Bearer " + token,
'Accept': "application/json, */*"
}
dataset = ''
if codes.find(',') != -1:
codeArray = codes.split(',')
for i in range(0,len(codeArray)):
conn.request("GET", "/partenaire/rome-metiers/v1/metiers/metier/" + codeArray[i], headers=headers)
res = conn.getresponse()
data = res.read()
datas = data.decode("utf-8")
dataset += str(datas.replace('"','').replace('{','').replace('}','').replace('[','').replace(']','').replace('code','').replace('libelle','').replace(',:',', ').replace('::',':'))
else:
conn.request("GET", "/partenaire/rome-metiers/v1/metiers/metier/" + codes, headers=headers)
res = conn.getresponse()
data = res.read()
datas = data.decode("utf-8")
dataset += str(datas.replace('"','').replace('{','').replace('}','').replace('[','').replace(']','').replace('code','').replace('libelle','').replace(',:',', ').replace('::',':'))
return dataset
@cl.step(type="tool")
async def Fiche_metier_competences_savoirs(codes):
payload = {
'grant_type': 'client_credentials',
'client_id': 'PAR_datalabapc_54c735e1b592af9d016cf0e45f8973082303609fc997f0821a9b308c07995251',
'client_secret': 'b968556f8b4bf2c42af42498304bab0d76edcef23ed4723bbd621ae317a6657e',
'scope': 'api_rome-fiches-metiersv1'
}
r = requests.post("https://entreprise.pole-emploi.fr/connexion/oauth2/access_token?realm=/partenaire",
headers={"Content-Type":"application/x-www-form-urlencoded"},
data=payload)
data = "[" + r.content.decode("utf-8") + "]"
load_json = json.loads(data)
token = next(d['access_token'] for d in load_json if d['scope'] == 'api_rome-fiches-metiersv1')
conn = http.client.HTTPSConnection("api.pole-emploi.io")
headers = {
'Authorization': "Bearer " + token,
'Accept': "application/json, */*"
}
dataset = ''
if codes.find(',') != -1:
codeArray = codes.split(',')
for i in range(0,len(codeArray)):
conn.request("GET", "/partenaire/rome-fiches-metiers/v1/fiches-rome/fiche-metier/" + codeArray[i], headers=headers)
res = conn.getresponse()
data = res.read()
datas = data.decode("utf-8")
dataset += str(datas.replace('"','').replace('{','').replace('}','').replace('[','').replace(']','').replace('code','').replace('libelle','').replace(',:',', ').replace('::',':'))
else:
conn.request("GET", "/partenaire/rome-fiches-metiers/v1/fiches-rome/fiche-metier/" + codes, headers=headers)
res = conn.getresponse()
data = res.read()
datas = data.decode("utf-8")
dataset += str(datas.replace('"','').replace('{','').replace('}','').replace('[','').replace(']','').replace('code','').replace('libelle','').replace(',:',', ').replace('::',':'))
return dataset
@cl.step(type="tool")
async def Fiche_metier(url, codes):
docs = []
docs_string = ''
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
if codes.find(',') != -1:
codeArray = codes.split(',')
for i in range(0,len(codeArray)):
response = requests.get(url + codeArray[i])
if response:
loader = PyPDFLoader(url + codeArray[i])
documents = loader.load()
docs.append(text_splitter.split_documents(documents))
for j in range(0,len(docs)):
docs_string += docs[j][0].page_content
else:
response = requests.get(url + codes)
if response:
loader = PyPDFLoader(url + codes)
documents = loader.load()
docs = text_splitter.split_documents(documents)
docs_string = docs[0].page_content
return docs_string
@cl.step(type="tool")
async def vectorOFDatabase_connexion():
os.environ['PINECONE_API_KEY'] = os.environ['PINECONE_API_KEY']
os.environ['PINECONE_INDEX_NAME'] = os.environ['PINECONE_INDEX_NAME']
os.environ['PINECONE_ENVIRONMENT'] = os.environ['PINECONE_ENVIRONMENT']
embeddings = HuggingFaceEmbeddings()
docsearch = PineconeVectorStore(index_name=os.environ['PINECONE_INDEX_NAME'], embedding=embeddings)
return docsearch
@cl.step(type="tool")
async def vectorDatabase_connexion():
pc = Pinecone(api_key='1e6bca4f-7ae3-4798-b85f-13139e82a7b8')
index_name = "all-skills"
index = pc.Index(index_name)
return index
@cl.step(type="tool")
async def API_connexion(romeListArray):
client = Api(client_id=os.environ['POLE_EMPLOI_CLIENT_ID'],
client_secret=os.environ['POLE_EMPLOI_CLIENT_SECRET'])
todayDate = datetime.datetime.today()
month, year = (todayDate.month-1, todayDate.year) if todayDate.month != 1 else (12, todayDate.year-1)
start_dt = todayDate.replace(day=1, month=month, year=year)
end_dt = datetime.datetime.today()
params = {"motsCles": romeListArray[0],'lieux':'75D','minCreationDate': dt_to_str_iso(start_dt),'maxCreationDate': dt_to_str_iso(end_dt),'range':'0-149'}
search_on_big_data = client.search(params=params)
results = search_on_big_data["resultats"]
return results
@cl.step(type="llm")
async def IA():
os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.environ['HUGGINGFACEHUB_API_TOKEN']
repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
llm = HuggingFaceEndpoint(
repo_id=repo_id, max_new_tokens=5000, temperature=0.7, streaming=True
)
return llm
@cl.on_settings_update
async def setup_agent(settings):
if not settings['rome'] and not settings['type'] and not settings['romeInput']:
await cl.Message(
author="Datapcc : 🌐🌐🌐",content=f"⚠️ Pas de contexte : {settings['rome']}\n⚠️ Pas de type de fiche : {settings['type']}\n⛔ Vous ne pouvez pas élaborer de fiche!"
).send()
elif settings['rome'] and not settings['type'] and not settings['romeInput']:
await cl.Message(
author="Datapcc : 🌐🌐🌐",content=f"👍 Changement de contexte : {settings['rome']}\n⚠️ Pas de type de fiche : {settings['type']}\n⛔ Vous ne pouvez pas élaborer de fiche!"
).send()
elif not settings['rome'] and settings['type'] and not settings['romeInput']:
await cl.Message(
author="Datapcc : 🌐🌐🌐",content=f"⚠️ Pas de contexte : {settings['rome']}\n👍 Type de fiche : {settings['type']}\n⛔ Vous ne pouvez pas élaborer de fiche!"
).send()
else:
if settings['romeInput']:
await cl.Message(
author="Datapcc : 🌐🌐🌐",content=f"👍 Changement de contexte : {settings['romeInput']}\n👍 Type de fiche : {settings['type']}"
).send()
romeList = settings['romeInput'] + " - " + settings['romeInput']
cl.user_session.set("romeFree", romeList)
else:
await cl.Message(
author="Datapcc : 🌐🌐🌐",content=f"👍 Changement de contexte : {settings['rome']}\n👍 Type de fiche : {settings['type']}"
).send()
romeList = settings['rome']
romeListArray = romeList.split(' - ')
cl.user_session.set("typeDoc", settings['type'])
if not cl.user_session.get("saveMemory"):
cl.user_session.set("saveMemory", "")
if settings['type'] == 'Note de composante sectorielle - NCS':
await construction_NCS(romeListArray)
elif settings['type'] == 'Fiche synoptique - FCS':
await construction_FCS(romeListArray,settings)
elif settings['type'] == 'Fiche Potentiel Profil de Sortie - FPPS':
await construction_FPPS(romeListArray,settings)
elif settings['type'] == 'Fiche activité - FCA':
await construction_FCA(romeListArray,settings)
elif settings['type'] == 'Fiche compétence - FCC':
await construction_FCC(romeListArray,settings)
elif settings['type'] == 'Module de formation - cours - MDF':
await construction_MDF(romeListArray,settings)
elif settings['type'] == 'Matrice de cohérences - MDC':
await construction_MDC(romeListArray,settings)
elif settings['type'] == "Référentiel d'évaluation - REV":
await construction_REV(romeListArray,settings)
#os.environ['ANTHROPIC_API_KEY'] = os.environ['ANTHROPIC_API_KEY']
contextChat = cl.user_session.get("contextChatBot")
if not contextChat:
contextChat = "Il n'y a pas de contexte."
os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.environ['HUGGINGFACEHUB_API_TOKEN']
repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
model = HuggingFaceEndpoint(
repo_id=repo_id,
max_new_tokens=8000,
temperature=0.5,
streaming=True
)
memory = cl.user_session.get("memory")
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
f"Contexte : Vous êtes un spécialiste du marché de l'emploi en fonction du niveau de qualification, des compétences professionnelles, des compétences transversales, du salaire et de l'expérience. Vous êtes doué pour faire des analyses du système travail sur les métiers les plus demandés grâce à votre aptitude à synthétiser les informations en fonction des critères définis ci-avant. En fonction des informations suivantes et du contexte suivant seulement et strictement. Contexte : {contextChat}. Réponds à la question suivante de la manière la plus pertinente, la plus exhaustive et la plus détaillée possible, avec au minimum 3000 tokens jusqu'à 4000 tokens, seulement et strictement dans le contexte et les informations fournies. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies.",
),
MessagesPlaceholder(variable_name="history"),
("human", "{question}, dans le contexte fourni."),
]
)
runnable = (
RunnablePassthrough.assign(
history=RunnableLambda(memory.load_memory_variables) | itemgetter("history")
)
| prompt
| model
)
cl.user_session.set("runnable", runnable)
@cl.on_message
async def main(message: cl.Message):
async with cl.Step(root=True, name="Réponse de Claude Anthropic", type="llm") as parent_step:
parent_step.input = message.content
chat_profile = cl.user_session.get("chat_profile")
chatProfile = chat_profile.split(' - ')
memory = cl.user_session.get("memory")
runnable = cl.user_session.get("runnable") # type: Runnable
msg = cl.Message(author="Datapcc : 🌐🌐🌐",content="")
text_elements = []
answer = []
async for chunk in runnable.astream({"question": message.content}):
await parent_step.stream_token(chunk)
await msg.stream_token(chunk)
QA_context_name = f"Question-réponse sur le contexte"
text_elements.append(
cl.Text(content="Question : " + message.content + "\n\nRéponse :\n" + msg.content, name=QA_context_name)
)
actions = [
cl.Action(name="download", value="Question : " + message.content + "\n\nRéponse : " + msg.content, description="download_QA_emplois")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Download", actions=actions).send()
await cl.sleep(2)
saves = [
cl.Action(name="saveToMemory", value="Question : " + message.content + "\n\nRéponse : " + msg.content, description="Mettre en mémoire la réponse à votre requête")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Mettre en mémoire la réponse à votre requête", actions=saves).send()
await cl.sleep(2)
memories = [
cl.Action(name="download", value=cl.user_session.get('saveMemory'), description="download_referentiel")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger la mise en mémoire de vos fiches", actions=memories).send()
await cl.sleep(2)
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Contexte : " + QA_context_name, elements=text_elements).send()
memory.chat_memory.add_user_message(message.content)
memory.chat_memory.add_ai_message(msg.content) |