File size: 5,655 Bytes
d7b9c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer, logging
import torch
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from PIL import Image

# Supress some unnecessary warnings when loading the CLIPTextModel
logging.set_verbosity_error()

# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Loading components we'll use

tokenizer = CLIPTokenizer.from_pretrained(
    "openai/clip-vit-large-patch14",
)

text_encoder = CLIPTextModel.from_pretrained(
    "openai/clip-vit-large-patch14",
).to(device)

vae = AutoencoderKL.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    subfolder = "vae",
).to(device)

unet = UNet2DConditionModel.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    subfolder = "unet",
).to(device)

beta_start,beta_end = 0.00085,0.012
scheduler = DDIMScheduler(
    beta_start=beta_start,
    beta_end=beta_end,
    beta_schedule="scaled_linear",
    num_train_timesteps=1000,
    clip_sample=False, 
    set_alpha_to_one=False,
)


# convert PIL image to latents
def encode(img):
    with torch.no_grad():
        latent = vae.encode(tfms.ToTensor()(img).unsqueeze(0).to(device)*2-1)
        latent = 0.18215 * latent.latent_dist.sample()
    return latent


# convert latents to PIL image
def decode(latent):
    latent = (1 / 0.18215) * latent
    with torch.no_grad():
        img = vae.decode(latent).sample
    img = (img / 2 + 0.5).clamp(0, 1)
    img = img.detach().cpu().permute(0, 2, 3, 1).numpy()
    img = (img * 255).round().astype("uint8")
    return Image.fromarray(img[0])


# convert prompt into text embeddings, also unconditional embeddings
def prep_text(prompt):

    text_input = tokenizer(
        prompt,
        padding="max_length",
        max_length=tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )

    text_embedding = text_encoder(
        text_input.input_ids.to(device)
    )[0]

    uncond_input = tokenizer(
        "",
        padding="max_length",
        max_length=tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )

    uncond_embedding = text_encoder(
        uncond_input.input_ids.to(device)
    )[0]

    return torch.cat([uncond_embedding, text_embedding])


def magic_mix(
    img, # specifies the layout semantics
    prompt, # specifies the content semantics
    kmin=0.3,
    kmax=0.6,
    v=0.5, # interpolation constant
    seed=42,
    steps=50,
    guidance_scale=7.5,
):

    tmin = steps- int(kmin*steps)
    tmax = steps- int(kmax*steps)

    text_embeddings = prep_text(prompt)

    scheduler.set_timesteps(steps)

    width, height = img.size
    encoded = encode(img)

    torch.manual_seed(seed)
    noise = torch.randn(
        (1,unet.in_channels,height // 8,width // 8),
    ).to(device)

    latents = scheduler.add_noise(
        encoded, 
        noise, 
        timesteps=scheduler.timesteps[tmax]
    )

    input = torch.cat([latents]*2)
                
    input = scheduler.scale_model_input(input, scheduler.timesteps[tmax])

    with torch.no_grad():
        pred = unet(
            input, 
            scheduler.timesteps[tmax],
            encoder_hidden_states=text_embeddings,
        ).sample

    pred_uncond, pred_text = pred.chunk(2)
    pred = pred_uncond + guidance_scale * (pred_text - pred_uncond)

    latents = scheduler.step(pred, scheduler.timesteps[tmax], latents).prev_sample

    for i, t in enumerate(tqdm(scheduler.timesteps)):
        if i > tmax:
            if i < tmin: # layout generation phase
                orig_latents = scheduler.add_noise(
                    encoded, 
                    noise, 
                    timesteps=t
                )
                
                input = (v*latents) + (1-v)*orig_latents # interpolating between layout noise and conditionally generated noise to preserve layout sematics
                input = torch.cat([input]*2)

            else: # content generation phase
                input = torch.cat([latents]*2)
                
            input = scheduler.scale_model_input(input, t)

            with torch.no_grad():
                pred = unet(
                    input, 
                    t,
                    encoder_hidden_states=text_embeddings,
                ).sample

            pred_uncond, pred_text = pred.chunk(2)
            pred = pred_uncond + guidance_scale * (pred_text - pred_uncond)

            latents = scheduler.step(pred, t, latents).prev_sample

    return decode(latents)

if __name__ == "__main__":

    import argparse

    parser = argparse.ArgumentParser()

    parser.add_argument("img_file", type=str, help="image file to provide the layout semantics for the mixing process")
    parser.add_argument("prompt", type=str, help="prompt to provide the content semantics for the mixing process")
    parser.add_argument("out_file", type=str, help="filename to save the generation to")
    parser.add_argument("--kmin", type=float, default=0.3)
    parser.add_argument("--kmax", type=float, default=0.6)
    parser.add_argument("--v", type=float, default=0.5)
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--steps", type=int, default=50)
    parser.add_argument("--guidance_scale", type=float, default=7.5)

    args = parser.parse_args()

    img = Image.open(args.img_file)
    out_img = magic_mix(
        img, 
        args.prompt,
        args.kmin,
        args.kmax,
        args.v,
        args.seed,
        args.steps,
        args.guidance_scale
        )
    out_img.save(args.out_file)