File size: 1,476 Bytes
9b14ff1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "dasomaru/gemma-3-4bit-it-demo"
# ๐ tokenizer๋ CPU์์๋ ๋ฏธ๋ฆฌ ๋ถ๋ฌ์ฌ ์ ์์
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# ๐ model์ CPU๋ก๋ง ๋จผ์ ์ฌ๋ฆผ (GPU ์์ง ์์)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16, # 4bit model์ด๋๊น
trust_remote_code=True,
)
@spaces.GPU(duration=300)
def generate_response(prompt):
# ๋ชจ๋ธ ๋ฐ ํ ํฌ๋์ด์ ๋ก๋ฉ์ ํจ์ ๋ด๋ถ์์ ์ํ
tokenizer = AutoTokenizer.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
model = AutoModelForCausalLM.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
model.to("cuda")
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7,
top_p=0.9,
top_k=50,
do_sample=True,)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch()
# zero = torch.Tensor([0]).cuda()
# print(zero.device) # <-- 'cpu' ๐ค
# @spaces.GPU
# def greet(n):
# print(zero.device) # <-- 'cuda:0' ๐ค
# return f"Hello {zero + n} Tensor"
# demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
# demo.launch() |