File size: 1,476 Bytes
9b14ff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "dasomaru/gemma-3-4bit-it-demo"

# ๐Ÿš€ tokenizer๋Š” CPU์—์„œ๋„ ๋ฏธ๋ฆฌ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์žˆ์Œ
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# ๐Ÿš€ model์€ CPU๋กœ๋งŒ ๋จผ์ € ์˜ฌ๋ฆผ (GPU ์•„์ง ์—†์Œ)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,  # 4bit model์ด๋‹ˆ๊นŒ
    trust_remote_code=True,
)

@spaces.GPU(duration=300)
def generate_response(prompt):
    # ๋ชจ๋ธ ๋ฐ ํ† ํฌ๋‚˜์ด์ € ๋กœ๋”ฉ์€ ํ•จ์ˆ˜ ๋‚ด๋ถ€์—์„œ ์ˆ˜ํ–‰
    tokenizer = AutoTokenizer.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
    model = AutoModelForCausalLM.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
    model.to("cuda")

    inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
    outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7,
    top_p=0.9,
    top_k=50,
    do_sample=True,)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch()



# zero = torch.Tensor([0]).cuda()
# print(zero.device) # <-- 'cpu' ๐Ÿค”

# @spaces.GPU
# def greet(n):
#     print(zero.device) # <-- 'cuda:0' ๐Ÿค—
#     return f"Hello {zero + n} Tensor"

# demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
# demo.launch()