Spaces:
Runtime error
Runtime error
File size: 4,309 Bytes
fccd4a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import streamlit as st
st.set_page_config(
page_title="Social Media Sentiment Analyzer", page_icon="π", layout="wide"
)
import pandas as pd
import helper_functions as hf
import plotly.express as px
import plotly.io as pio
import plotly
# Whenever the search button is clicked, the search_callback function is called
def search_callback():
if twitter_agree:
if len(st.session_state.search_term) == 0:
st.error("Please enter a search term")
return
st.session_state.df = hf.get_tweets(st.session_state.search_term, st.session_state.num_tweets)
st.session_state.df = hf.get_sentiment(st.session_state.df)
def twitter_form():
with st.form(key="search_form"):
st.subheader("Search Parameters")
st.text_input("Enter a User handle (like _@elonmusk_), Hashtag (like _#Bitcoin_) or Topic (like _climate change_)", key="search_term")
st.slider("Number of tweets", min_value=100, max_value=500, key="num_tweets")
st.form_submit_button(label="Search", on_click=search_callback)
st.markdown(
"Note: it may take a while to load the results, especially with large number of tweets"
)
with st.sidebar:
st.title("Social Media Sentiment Analyzer")
st.subheader("Choose your platform")
twitter_agree = st.checkbox('Twitter')
if twitter_agree:
twitter_form()
st.markdown(
"<div style='position: fixed; bottom: 0;'>Created by Taaha Bajwa</div>",
unsafe_allow_html=True,
)
if "df" in st.session_state:
def make_dashboard(tweet_df, bar_color, wc_color):
# first row
col1, col2, col3 = st.columns([28, 34, 38])
with col1:
sentiment_plot = hf.plot_sentiment(tweet_df)
sentiment_plot.update_layout(height=350, title_x=0.5)
st.plotly_chart(sentiment_plot, theme=None, use_container_width=True)
with col2:
top_unigram = hf.get_top_n_gram(tweet_df, ngram_range=(1, 1), n=10)
unigram_plot = hf.plot_n_gram(
top_unigram, title="Top 10 Occuring Words", color=bar_color
)
unigram_plot.update_layout(height=350)
st.plotly_chart(unigram_plot, theme=None, use_container_width=True)
with col3:
top_bigram = hf.get_top_n_gram(tweet_df, ngram_range=(2, 2), n=10)
bigram_plot = hf.plot_n_gram(
top_bigram, title="Top 10 Occuring Bigrams", color=bar_color
)
bigram_plot.update_layout(height=350)
st.plotly_chart(bigram_plot, theme=None, use_container_width=True)
# second row
col1, col2 = st.columns([60, 40])
with col1:
def sentiment_color(sentiment):
if sentiment == "Positive":
return "background-color: #54A24B; color: white"
elif sentiment == "Negative":
return "background-color: #FF7F0E"
else:
return "background-color: #1F77B4"
st.dataframe(
tweet_df[["Sentiment", "Tweet"]].style.applymap(
sentiment_color, subset=["Sentiment"]
),
height=350,
)
with col2:
wordcloud = hf.plot_wordcloud(tweet_df, colormap=wc_color)
st.pyplot(wordcloud)
adjust_tab_font = """
<style>
button[data-baseweb="tab"] > div[data-testid="stMarkdownContainer"] > p {
font-size: 20px;
}
</style>
"""
st.write(adjust_tab_font, unsafe_allow_html=True)
tab1, tab2, tab3, tab4 = st.tabs(["All", "Positive π", "Negative βΉοΈ", "Neutral π"])
with tab1:
tweet_df = st.session_state.df
make_dashboard(tweet_df, bar_color="#1F77B4", wc_color="Blues")
with tab2:
tweet_df = st.session_state.df.query("Sentiment == 'Positive'")
make_dashboard(tweet_df, bar_color="#54A24B", wc_color="Greens")
with tab3:
tweet_df = st.session_state.df.query("Sentiment == 'Negative'")
make_dashboard(tweet_df, bar_color="#FF7F0E", wc_color="Oranges")
with tab4:
tweet_df = st.session_state.df.query("Sentiment == 'Neutral'")
make_dashboard(tweet_df, bar_color="#1F77B4", wc_color="Blues") |