Spaces:
Runtime error
Runtime error
File size: 31,818 Bytes
583664a b2b6846 c0d7f9d e62e803 583664a e62e803 e0ed1f1 583664a e0ed1f1 583664a 41dac9c 583664a e0ed1f1 583664a 41dac9c 583664a e0ed1f1 583664a e0ed1f1 583664a e0ed1f1 583664a e0ed1f1 583664a e0ed1f1 583664a ce9c373 583664a ce9c373 583664a 41dac9c 583664a 41dac9c 82ffb8c 41dac9c e0ed1f1 583664a e0ed1f1 fcd94b5 2c8c228 583664a 2c8c228 583664a 41dac9c 583664a 41dac9c 583664a 41dac9c 583664a 2c8c228 583664a 2c8c228 583664a fcd94b5 ce9c373 fcd94b5 0af0649 ce9c373 fcd94b5 0af0649 ce9c373 fcd94b5 0af0649 ce9c373 fcd94b5 0af0649 ce9c373 41dac9c 2c8c228 41dac9c 2c8c228 41dac9c e0ed1f1 583664a 41dac9c 583664a 41dac9c 583664a ce9c373 583664a 41dac9c 583664a ce9c373 583664a 0af0649 ce9c373 0af0649 41dac9c 583664a 0af0649 41dac9c ce9c373 2c8c228 41dac9c ce9c373 583664a ce9c373 583664a ce9c373 583664a 2c8c228 583664a 2c8c228 583664a 2c8c228 583664a ce9c373 583664a ce9c373 583664a ce9c373 583664a ce9c373 583664a 0af0649 41dac9c 2c8c228 41dac9c ce9c373 41dac9c ce9c373 41dac9c ce9c373 41dac9c ce9c373 41dac9c ce9c373 41dac9c 0af0649 583664a 5976712 583664a 41dac9c 583664a c0d7f9d e0ed1f1 c0d7f9d e0ed1f1 c0d7f9d e0ed1f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
import streamlit as st
import os.path
import pathlib
import pandas as pd
import numpy as np
import PyPDF2
from PyPDF2 import PdfReader
from os import walk
import nltk
import glob
import plotly.express as px
from wordcloud import WordCloud
import plotly.io as pio
from plotly.subplots import make_subplots
import plotly.graph_objs as go
import pandas as pd
import plotly.offline as pyo
import io
from io import StringIO
#@st.cache_resource()
@st.cache()
def get_nl():
return nltk.download('punkt')
get_nl()
from nltk.tokenize import sent_tokenize
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
# if os.path.exists("report.html"):
# os.remove("report.html")
#@st.cache_resource()
@st.cache(allow_output_mutation=True)
def get_sentiment_model():
tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
return tokenizer,model
tokenizer_sentiment,model_sentiment = get_sentiment_model()
@st.cache(allow_output_mutation=True)
def get_emotion_model():
tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
return tokenizer,model
tokenizer_emotion,model_emotion = get_emotion_model()
@st.cache(allow_output_mutation=True)
def get_intent_model():
classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-deberta-v3-small')
return classifier
intent_classifier = get_intent_model()
def extract_text_from_pdf(path):
text=''
reader = PdfReader(path)
number_of_pages = len(reader.pages)
print(number_of_pages)
for i in range(number_of_pages):
page=reader.pages[i]
text = text + page.extract_text()
return text
# Create a button to download the HTML file
def download_html():
with st.spinner('Downloading HTML file...'):
# Get the HTML content
with open('report.html', "r") as f:
html = f.read()
f.close()
# Set the file name and content type
file_name = "report.html"
mime_type = "text/html"
# Use st.download_button() to create a download button
print('download button')
st.download_button(label="Download Report", data=html, file_name=file_name, mime=mime_type)
st.stop()
if 'filename_key' not in st.session_state:
st.session_state.filename_key = ''
st.write("""
# Dcoument Analysis Tool
""")
#uploaded_file = st.file_uploader("Choose a PDF file")
#uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=False, type=['pdf'])
uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=True, type=['pdf'])
#if uploaded_file is not None:
if len(uploaded_file)==0:
#print('none')
st.session_state.filename_key = ''
elif len(uploaded_file)>0:
import time
# Wait for 5 seconds
time.sleep(5)
pdf_reader = PyPDF2.PdfReader(uploaded_file[0])
num_pages = len(pdf_reader.pages)
file_name = uploaded_file[0].name
# st.write(st.session_state.filename_key)
# print(file_name)
# st.write("Filename:", file_name)
if num_pages > 20:
st.error("Pages in PDF file should be less than 20.")
# Check that only one file was uploaded
#elif isinstance(uploaded_file, list):
elif len(uploaded_file) > 1:
st.error("Please upload only one PDF file at a time.")
elif st.session_state.filename_key == file_name:
st.write("Report downloaded successfully")
else:
#uploaded_file = uploaded_file[0]
# Check that the file is a PDF
if uploaded_file[0].type != 'application/pdf':
st.error("Please upload a PDF file.")
else:
############################ 1. Extract text from PDF ############################
text=''
# return text from pdf
pdf_reader = PyPDF2.PdfReader(uploaded_file[0])
# Get the number of pages in the PDF file
num_pages = len(pdf_reader.pages)
# Display the number of pages in the PDF file
st.write(f"Number of pages in PDF file: {num_pages}")
for i in range(num_pages):
page=pdf_reader.pages[i]
text = text + page.extract_text()
############################ 2. Running models ############################
text = text.replace("\n", " " )
text = text.replace("$", "dollar " )
sentences = sent_tokenize(text)
title = sentences[0]
long_sentence=[]
small_sentence=[]
useful_sentence=[]
for i in sentences:
if len(i) > 510:
long_sentence.append(i)
elif len(i) < 50:
small_sentence.append(i)
else:
useful_sentence.append(i)
useful_sentence_len = len(useful_sentence)
del sentences
############################ 2.1 Sentiment Modeling ############################
placeholder1 = st.empty()
placeholder1.text('Performing Sentiment Analysis...')
#with st.empty():
my_bar = st.progress(0)
tokenizer = tokenizer_sentiment
model = model_sentiment
pipe = pipeline(model="ProsusAI/finbert")
classifier = pipeline(model="ProsusAI/finbert")
#output = classifier(useful_sentence)
output=[]
i=0
for temp in useful_sentence:
output.extend(classifier(temp))
i=i+1
my_bar.progress(int((i/useful_sentence_len)*100))
my_bar.empty()
df = pd.DataFrame.from_dict(output)
df['Sentence']= pd.Series(useful_sentence)
############################ 2.2 Emotion Modeling ############################
#placeholder2 = st.empty()
placeholder1.text('Performing Emotion Analysis...')
# with st.empty():
my_bar = st.progress(0)
tokenizer = tokenizer_emotion
model = model_emotion
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=1)
output_emotion = []
i=0
for temp in useful_sentence:
output_emotion.extend(classifier(temp)[0])
i=i+1
my_bar.progress(int((i/useful_sentence_len)*100))
my_bar.empty()
placeholder1.text('Emotion Analysis Completed')
############################ 2.3 Intent Modeling ############################
placeholder1.text('Performing Intent Analysis...')
my_bar = st.progress(0)
candidate_labels = ['complaint', 'suggestion', 'query']
classifier = intent_classifier
# temp_intent = classifier(useful_sentence, candidate_labels)
# output_intent=[]
# for temp in temp_intent:
# output_intent.append({'label' : temp['labels'][0], 'score' : temp['scores'][0]})
output_intent=[]
i=0
for temp1 in useful_sentence:
temp = classifier(temp1, candidate_labels)
output_intent.append({'label' : temp['labels'][0], 'score' : temp['scores'][0]})
i=i+1
my_bar.progress(int((i/useful_sentence_len)*100))
df_intent = pd.DataFrame.from_dict(output_intent)
df_intent['Sentence']= pd.Series(useful_sentence)
my_bar.empty()
placeholder1.text('Processing Completed')
############################ 3. Processing ############################
############################ 3.1. Sentiment Analysis ############################
# labels = ['neutral', 'positive', 'negative']
# values = df.label.value_counts().to_list()
labels = ['neutral', 'positive', 'negative']
values = [df[df['label']=='neutral'].shape[0], df[df['label']=='positive'].shape[0], df[df['label']=='negative'].shape[0]]
# removing words
words_to_remove = ["s", "quarter", "thank", "million", "Thank", "quetion", 'wa', 'rate', 'firt',
"customer", "business", "last year", "year", 'lat', 'well', 'jut', 'thi', 'cutomer',
"will", "think", "higher", "question", "going"]
for word in words_to_remove:
text = text.replace(word, "")
wordcloud = WordCloud(background_color='white', width=800, height=400).generate(text)
image = wordcloud.to_image()
pos_df = df[df['label']=='positive']
pos_df = pos_df[['score', 'Sentence']]
pos_df = pos_df.sort_values('score', ascending=False)
pos_df_mean = pos_df.score.mean()
pos_df['score'] = pos_df['score'].round(4)
pos_df.rename(columns = {'Sentence':'Positive Sentences'}, inplace = True)
num_of_pos_sentences = pos_df.shape[0]
if num_of_pos_sentences == 0:
pos_df.loc[0] = [0.0, '-------No positive sentences found in report-------']
neg_df = df[df['label']=='negative']
neg_df = neg_df[['score', 'Sentence']]
neg_df = neg_df.sort_values('score', ascending=False)
neg_df_mean = neg_df.score.mean()
neg_df['score'] = neg_df['score'].round(4)
neg_df.rename(columns = {'Sentence':'Negative Sentences'}, inplace = True)
num_of_neg_sentences = neg_df.shape[0]
if num_of_neg_sentences == 0:
neg_df.loc[0] = [0.0, '-------No negative sentences found in report-------']
neu_df = df[df['label']=='neutral']
neu_df = neu_df[['score', 'Sentence']]
neu_df = neu_df.sort_values('score', ascending=False)
#neu_df_mean = neu_df.score.mean()
neu_df['score'] = neu_df['score'].round(4)
neu_df.rename(columns = {'Sentence':'Neutral Sentences'}, inplace = True)
num_of_neu_sentences = neu_df.shape[0]
if num_of_neu_sentences == 0:
neu_df.loc[0] = [0.0, '-------No neutral sentences found in report-------']
# df_temp = neg_df
# df_temp = df_temp['score'] * -1
# df_temp = pd.concat([df_temp, pos_df])
df_temp = neg_df
df_temp['score'] = df_temp['score'] * -1
df_temp_list = df_temp['score'].to_list() + pos_df['score'].to_list()
mean = sum(df_temp_list) / len(df_temp_list)
############################ 3.2. Emotion Analysis ############################
df_emotion = pd.DataFrame.from_dict(output_emotion)
df_emotion['Sentence']= pd.Series(useful_sentence)
df_joy = df_emotion[df_emotion['label']=='joy']
df_joy = df_joy[['score', 'Sentence']]
df_joy = df_joy.sort_values('score', ascending=False)
df_joy['score'] = df_joy['score'].round(4)
df_joy.rename(columns = {'Sentence':'Joy Sentences'}, inplace = True)
num_of_joy_sentences = df_joy.shape[0]
if num_of_joy_sentences == 0:
df_joy.loc[0] = [0.0, '-------No joy sentences found in report-------']
df_sadness = df_emotion[df_emotion['label']=='sadness']
df_sadness = df_sadness[['score', 'Sentence']]
df_sadness = df_sadness.sort_values('score', ascending=False)
df_sadness['score'] = df_sadness['score'].round(4)
df_sadness.rename(columns = {'Sentence':'Sad Sentences'}, inplace = True)
num_of_sad_sentences = df_sadness.shape[0]
if num_of_sad_sentences == 0:
df_sadness.loc[0] = [0.0, '-------No sad sentences found in report-------']
df_anger = df_emotion[df_emotion['label']=='anger']
df_anger = df_anger[['score', 'Sentence']]
df_anger = df_anger.sort_values('score', ascending=False)
df_anger['score'] = df_anger['score'].round(4)
df_anger.rename(columns = {'Sentence':'Angry Sentences'}, inplace = True)
num_of_anger_sentences = df_anger.shape[0]
if num_of_anger_sentences == 0:
df_anger.loc[0] = [0.0, '-------No angry sentences found in report-------']
df_surprise = df_emotion[df_emotion['label']=='surprise']
df_surprise = df_surprise[['score', 'Sentence']]
df_surprise = df_surprise.sort_values('score', ascending=False)
df_surprise['score'] = df_surprise['score'].round(4)
df_surprise.rename(columns = {'Sentence':'Surprised Sentences'}, inplace = True)
num_of_surprise_sentences = df_surprise.shape[0]
if num_of_surprise_sentences == 0:
df_surprise.loc[0] = [0.0, '-------No surprised sentences found in report-------']
# df_temp_emotion = df_sadness
# df_temp_emotion = pd.concat([df_sadness, df_anger])
# df_temp_emotion = df_temp_emotion['score'] * -1
# df_temp_emotion = pd.concat([df_temp_emotion, df_joy])
df_temp_emotion = df_sadness
df_temp_emotion['score'] = df_temp_emotion['score'] * -1
df_temp_emotion_list = df_temp_emotion['score'].to_list() + df_joy['score'].to_list()
emotion_mean = sum(df_temp_emotion_list) / len(df_temp_emotion_list)
# df_temp = neg_df
# df_temp['score'] = df_temp['score'] * -1
# df_temp_list = df_temp['score'].to_list() + pos_df['score'].to_list()
# mean = sum(df_temp_list) / len(df_temp_list)
############################ 3.3. Intent Analysis ############################
df_query = df_intent[df_intent['label']=='query']
df_query = df_query[['score', 'Sentence']]
df_query = df_query.sort_values('score', ascending=False)
df_query['score'] = df_query['score'].round(4)
df_query.rename(columns = {'Sentence':'Queries'}, inplace = True)
df_query = df_query[df_query['score']>0.5]
num_of_queries = df_query.shape[0]
if num_of_queries == 0:
df_query.loc[0] = [0.0, '-------No queries found in report-------']
df_complaint = df_intent[df_intent['label']=='complaint']
df_complaint = df_complaint[['score', 'Sentence']]
df_complaint = df_complaint.sort_values('score', ascending=False)
df_complaint['score'] = df_complaint['score'].round(4)
df_complaint.rename(columns = {'Sentence':'Complaints'}, inplace = True)
df_complaint = df_complaint[df_complaint['score']>0.5]
num_of_complaints = df_complaint.shape[0]
if num_of_complaints == 0:
df_complaint.loc[0] = [0.0, '-------No complaints found in report-------']
df_suggestion = df_intent[df_intent['label']=='suggestion']
df_suggestion = df_suggestion[['score', 'Sentence']]
df_suggestion = df_suggestion.sort_values('score', ascending=False)
df_suggestion['score'] = df_suggestion['score'].round(4)
df_suggestion.rename(columns = {'Sentence':'Suggestions'}, inplace = True)
df_suggestion = df_suggestion[df_suggestion['score']>0.5]
num_of_suggestions = df_suggestion.shape[0]
if num_of_suggestions == 0:
df_suggestion.loc[0] = [0.0, '-------No suggestions found in report-------']
total_num_of_intent = num_of_queries + num_of_complaints + num_of_suggestions
############################ 4. Plotting ############################
fig = make_subplots(
rows=62, cols=6,
specs=[ [None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, {"type": "indicator", "rowspan": 3, "colspan": 2}, None, None, None],
[None, None, None, None, None, None],
[{"type": "pie", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[{"type": "image", "rowspan": 5, "colspan": 3}, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[{"type": "table", "rowspan": 5, "colspan": 3}, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, {"type": "indicator", "rowspan": 3, "colspan": 2}, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[{"type": "bar", "rowspan": 6, "colspan": 6}, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[{"type": "table", "rowspan": 2, "colspan": 3}, None, None, {"type": "table", "rowspan": 2, "colspan": 3}, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[{"type": "table", "rowspan": 2, "colspan": 3}, None, None, {"type": "table", "rowspan": 2, "colspan": 3}, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, {"type": "indicator", "rowspan": 3, "colspan": 2}, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, {"type": "indicator", "rowspan": 2, "colspan": 5}, None, None, None, None],#first bullet
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, {"type": "indicator", "rowspan": 2, "colspan": 5}, None, None, None, None], #2nd bullet
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, {"type": "indicator", "rowspan": 2, "colspan": 5}, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[{"type": "table", "rowspan": 4, "colspan": 2}, None, {"type": "table", "rowspan": 4, "colspan": 2}, None, {"type": "table", "rowspan": 4, "colspan": 2}, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
[None, None, None, None, None, None],
],
)
############################ 4.1. Sentiment Analysis ############################
fig.add_trace(go.Indicator(
mode = "number",
value = int(mean*100),
number = {"suffix": "%"},
title = {"text": "<span style='font-size:1.5em'>Sentiment Analysis</span><br><span style='font-size:0.8em;color:gray'>Positivity Score</span>"}
), row=4, col=3)
colors = px.colors.diverging.Portland#RdBu
fig.add_trace(go.Pie(labels=labels, values=values, hole = 0.5,
title = 'Count by label',
marker=dict(colors=colors,
line=dict(width=2, color='white'))),
row=6, col=1)
fig.add_trace(go.Indicator(
mode = "number",
value = len(df.label.values.tolist()),
title = {"text": "Count of Sentence"}), row=6, col=3)
#fig.update_traces(title_text="Sentiment Analysis", selector=dict(type='indicator'), row=6, col=3)
fig.add_trace(go.Indicator(
mode = "gauge+number",
value = mean,
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': "Average of Score", 'font': {'size': 16}},
gauge = {
'axis': {'range': [-1, 1], 'tickwidth': 1, 'tickcolor': "darkblue"},
'bar': {'color': "darkblue"},
'steps': [
{'range': [-0.29, 0.29], 'color': 'white'},
{'range': [0.3, 1], 'color': 'green'},
{'range': [-1, -0.3], 'color': 'red'}
],
'threshold': {
'line': {'color': "black", 'width': 4},
'thickness': 0.75,
'value': abs((pos_df_mean - neg_df_mean))
}
}
), row=6, col=5)
if mean < -0.29:
fig.update_traces(title_text="Cummulative Sentiment Negative", selector=dict(type='indicator'), row=6, col=5)
elif mean < 0.29:
fig.update_traces(title_text="Cummulative Sentiment Neutral", selector=dict(type='indicator'), row=6, col=5)
else:
fig.update_traces(title_text="Cummulative Sentiment Positive", selector=dict(type='indicator'), row=6, col=5)
fig.add_trace(go.Image(z=image), row=13, col=1)
fig.update_xaxes(visible=False, row=13, col=1)
fig.update_yaxes(visible=False, row=13, col=1)
table_trace1 = go.Table(
header=dict(values=list(pos_df.columns), fill_color='lightgray', align='left'),
cells=dict(values=[pos_df[name] for name in pos_df.columns], fill_color='white', align='left'),
columnwidth=[1, 4]
)
fig.add_trace(table_trace1, row=13, col=4)
table_trace2 = go.Table(
header=dict(values=list(neg_df.columns), fill_color='lightgray', align='left'),
cells=dict(values=[neg_df[name] for name in neg_df.columns], fill_color='white', align='left'),
columnwidth=[1, 4]
)
fig.add_trace(table_trace2, row=18, col=4)
table_trace2 = go.Table(
header=dict(values=list(neu_df.columns), fill_color='lightgray', align='left'),
cells=dict(values=[neu_df[name] for name in neu_df.columns], fill_color='white', align='left'),
columnwidth=[1, 4]
)
fig.add_trace(table_trace2, row=18, col=1)
########################### 4.2. Emotion Analysis ###########################
fig.add_trace(go.Indicator(
mode = "number",
value = int(emotion_mean*100),
number = {"suffix": "%"},
title = {"text": "<span style='font-size:1.5em'>Emotion Analysis</span><br><span style='font-size:0.8em;color:gray'>Happiness Score</span>"}
), row=26, col=3)
# Add bar chart
colors_emotions = ['#174ecf', '#cfc517', '#940625', '#17cfcb']
emotion_bar_xlabels = ['Joy', 'Sadness', 'Anger', 'Surprise']
emotion_bar_ylabels = [num_of_joy_sentences,
num_of_sad_sentences,
num_of_anger_sentences,
num_of_surprise_sentences]
#annotations = [dict(x=x, y=y, text='π', showarrow=False) for x, y in zip(emotion_bar_xlabels, emotion_bar_ylabels)]
annotations = ['π', 'π', 'π‘', 'π―']
fig.add_trace(
go.Bar(x=emotion_bar_xlabels, y= emotion_bar_ylabels,
showlegend=True,
marker_color=colors_emotions,
text=annotations,
textfont=dict(size=40)),
row=29, col=1)
fig.update_xaxes(title_text='Emotions', title_font=dict(size=16), row=29, col=1)
fig.update_yaxes(title_text='Number of sentences', title_font=dict(size=16), row=29, col=1)
# df_anger.loc[0] = [0.0, 'None']
# df_anger
################## happiness table
table_trace2 = go.Table(
header=dict(values=list(df_joy.columns), fill_color='lightgray', align='left'),
cells=dict(values=[df_joy[name] for name in df_joy.columns], fill_color='white', align='left'),
columnwidth=[1, 4]
)
fig.add_trace(table_trace2, row=36, col=1)
################## sadness table
table_trace2 = go.Table(
header=dict(values=list(df_sadness.columns), fill_color='lightgray', align='left'),
cells=dict(values=[df_sadness[name] for name in df_sadness.columns], fill_color='white', align='left'),
columnwidth=[1, 4]
)
fig.add_trace(table_trace2, row=36, col=4)
################## surprise table
table_trace2 = go.Table(
header=dict(values=list(df_surprise.columns), fill_color='lightgray', align='left'),
cells=dict(values=[df_surprise[name] for name in df_surprise.columns], fill_color='white', align='left'),
columnwidth=[1, 4]
)
fig.add_trace(table_trace2, row=39, col=1)
################## anger table
table_trace2 = go.Table(
header=dict(values=list(df_anger.columns), fill_color='lightgray', align='left'),
cells=dict(values=[df_anger[name] for name in df_anger.columns], fill_color='white', align='left'),
columnwidth=[1, 4]
)
fig.add_trace(table_trace2, row=39, col=4)
########################### 4.3. Intent Analysis ###########################
fig.add_trace(go.Indicator(
mode = "number",
value = round(num_of_suggestions/max(num_of_complaints,0), 2),
number = {"suffix": ""},
title = {"text": "<span style='font-size:1.5em'>Intent Analysis</span><br><span style='font-size:0.8em;color:gray'>Suggestion/Complaint Ratio</span>"}
), row=44, col=3)
fig.add_trace(go.Indicator(
mode = "number+gauge",
gauge = {'shape': "bullet", 'axis': {'range': [None, total_num_of_intent]}, 'bar': {'color': "blue"}},
#delta = {'reference': 300},
value = num_of_queries,
#domain = {'x': [0.5, 1], 'y': [0.3, 0.9]},
title = {'text': "Queries"}), row=47, col=2)
fig.add_trace(go.Indicator(
mode = "number+gauge",
gauge = {'shape': "bullet", 'axis': {'range': [None, total_num_of_intent]},},
#delta = {'reference': 300},
value = num_of_suggestions,
#domain = {'x': [0.5, 1], 'y': [0.3, 0.9]},
title = {'text': "Suggestions"}), row=50, col=2)
fig.add_trace(go.Indicator(
mode = "number+gauge",
gauge = {'shape': "bullet", 'axis': {'range': [None, total_num_of_intent]}, 'bar': {'color': "red"}},
#delta = {'reference': 300},
value = num_of_complaints,
#domain = {'x': [0.5, 1], 'y': [0.3, 0.9]},
title = {'text': "Complaints"}), row=53, col=2)
############ query table
table_trace2 = go.Table(
header=dict(values=list(df_query.columns), fill_color='lightgray', align='left'),
cells=dict(values=[df_query[name] for name in df_query.columns], fill_color='white', align='left'),
columnwidth=[1, 4]
)
fig.add_trace(table_trace2, row=56, col=1)
############ complaints table
table_trace2 = go.Table(
header=dict(values=list(df_complaint.columns), fill_color='lightgray', align='left'),
cells=dict(values=[df_complaint[name] for name in df_complaint.columns], fill_color='white', align='left'),
columnwidth=[1, 4]
)
fig.add_trace(table_trace2, row=56, col=3)
############ suggestions table
table_trace2 = go.Table(
header=dict(values=list(df_suggestion.columns), fill_color='lightgray', align='left'),
cells=dict(values=[df_suggestion[name] for name in df_suggestion.columns], fill_color='white', align='left'),
columnwidth=[1, 4]
)
fig.add_trace(table_trace2, row=56, col=5)
import textwrap
if len(title) > 120:
title = title[:120] + '...'
wrapped_title = "\n".join(textwrap.wrap(title, width=50))
# Add HTML tags to force line breaks in the title text
wrapped_title = "<br>".join(wrapped_title.split("\n"))
fig.update_layout(height=4000, showlegend=False, title={'text': f"<b>{wrapped_title} - Text Analysis Report</b>", 'x': 0.5, 'xanchor': 'center','font': {'size': 32}})
#pyo.plot(fig, filename='report.html')
############################## 5. Download Report ##############################
buffer = io.StringIO()
fig.write_html(buffer, include_plotlyjs='cdn')
html_bytes = buffer.getvalue().encode()
st.download_button(
label='Download Report',
data=html_bytes,
file_name='report.html',
mime='text/html'
)
st.session_state.filename_key = file_name |