File size: 5,686 Bytes
b7bb8ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import streamlit as st
import os
import embed_pdf
import shutil

def clear_directory(directory):
    for filename in os.listdir(directory):
        file_path = os.path.join(directory, filename)
        try:
            if os.path.isfile(file_path) or os.path.islink(file_path):
                os.unlink(file_path)
            elif os.path.isdir(file_path):
                shutil.rmtree(file_path)
        except Exception as e:
            print(f'Failed to delete {file_path}. Reason: {e}')

def clear_pdf_files(directory):
    for filename in os.listdir(directory):
        file_path = os.path.join(directory, filename)
        try:
            if os.path.isfile(file_path) and file_path.endswith('.pdf'):
                os.remove(file_path)
        except Exception as e:
            print(f'Failed to delete {file_path}. Reason: {e}')

# clear_pdf_files("pdf")
# clear_directory("index")


# create sidebar and ask for openai api key if not set in secrets
secrets_file_path = os.path.join(".streamlit", "secrets.toml")
# if os.path.exists(secrets_file_path):
#     try:
#         if "OPENAI_API_KEY" in st.secrets:
#             os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"]
#         else:
#             print("OpenAI API Key not found in environment variables")
#     except FileNotFoundError:
#         print('Secrets file not found')
# else:
#     print('Secrets file not found')

# if not os.getenv('OPENAI_API_KEY', '').startswith("sk-"):
#     os.environ["OPENAI_API_KEY"] = st.sidebar.text_input(
#         "OpenAI API Key", type="password"
#     )
# else:
#     if st.sidebar.button("Embed Documents"):
#         st.sidebar.info("Embedding documents...")
#         try:
#             embed_pdf.embed_all_pdf_docs()
#             st.sidebar.info("Done!")
#         except Exception as e:
#             st.sidebar.error(e)
#             st.sidebar.error("Failed to embed documents.")

os.environ["OPENAI_API_KEY"] = st.sidebar.text_input(
    "OpenAI API Key", type="password"
)

uploaded_file = st.sidebar.file_uploader("Upload Document", type=['pdf', 'docx'], disabled=False)

if uploaded_file is None:
    file_uploaded_bool = False
else:
    file_uploaded_bool = True

if st.sidebar.button("Embed Documents", disabled=not file_uploaded_bool):
    st.sidebar.info("Embedding documents...")
    try:
        embed_pdf.embed_all_inputed_pdf_docs(uploaded_file)
        # embed_pdf.embed_all_pdf_docs()
        st.sidebar.info("Done!")
    except Exception as e:
        st.sidebar.error(e)
        st.sidebar.error("Failed to embed documents.")

# create the app
st.title("Chat with your PDF")

# chosen_file = st.radio(
#     "Choose a file to search", embed_pdf.get_all_index_files(), index=0
# )

# check if openai api key is set
if not os.getenv('OPENAI_API_KEY', '').startswith("sk-"):
    st.warning("Please enter your OpenAI API key!", icon="⚠")
    st.stop()

# load the agent
from llm_helper import convert_message, get_rag_chain, get_rag_fusion_chain

rag_method_map = {
    'Basic RAG': get_rag_chain,
    'RAG Fusion': get_rag_fusion_chain
}
chosen_rag_method = st.radio(
    "Choose a RAG method", rag_method_map.keys(), index=0
)
get_rag_chain_func = rag_method_map[chosen_rag_method]
## get the chain WITHOUT the retrieval callback (not used)
# custom_chain = get_rag_chain_func(chosen_file)

# create the message history state
if "messages" not in st.session_state:
    st.session_state.messages = []

# render older messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# render the chat input
prompt = st.chat_input("Enter your message...")
if prompt:
    st.session_state.messages.append({"role": "user", "content": prompt})

    # render the user's new message
    with st.chat_message("user"):
        st.markdown(prompt)

    # render the assistant's response
    with st.chat_message("assistant"):
        retrival_container = st.container()
        message_placeholder = st.empty()

        # retrieval_status = retrival_container.status("**Context Retrieval**")
        queried_questions = []
        rendered_questions = set()
        def update_retrieval_status():
            for q in queried_questions:
                if q in rendered_questions:
                    continue
                rendered_questions.add(q)
                # retrieval_status.markdown(f"\n\n`- {q}`")
                retrival_container.markdown(f"\n\n`- {q}`")
        def retrieval_cb(qs):
            for q in qs:
                if q not in queried_questions:
                    queried_questions.append(q)
            return qs
        
        # get the chain with the retrieval callback
        custom_chain = get_rag_chain_func(uploaded_file.name, retrieval_cb=retrieval_cb)
        
        if "messages" in st.session_state:
            chat_history = [convert_message(m) for m in st.session_state.messages[:-1]]
        else:
            chat_history = []

        full_response = ""
        for response in custom_chain.stream(
            {"input": prompt, "chat_history": chat_history}
        ):
            if "output" in response:
                full_response += response["output"]
            else:
                full_response += response.content

            message_placeholder.markdown(full_response + "▌")
            update_retrieval_status()

        # retrival_container.update(state="complete")
        # retrieval_status.update(state="complete")
        message_placeholder.markdown(full_response)

    # add the full response to the message history
    st.session_state.messages.append({"role": "assistant", "content": full_response})