File size: 1,009 Bytes
d3fbdd8
a181011
35a61ec
4f9177c
35a61ec
 
 
a181011
35a61ec
 
 
 
a181011
35a61ec
 
 
 
 
 
 
 
 
 
a181011
4f9177c
35a61ec
2ffa538
d3fbdd8
 
 
 
 
 
 
 
35a61ec
a181011
35a61ec
68fba31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from flask import Flask, render_template, request, send_file, make_response
# Import your attendance model and processing functions
from run import predict_and_show
import pandas as pd

app = Flask("Ogs")


@app.route('/')
def index():
    return render_template('index.html')


@app.route('/upload', methods=['POST'])
def upload():
    if 'file' not in request.files:
        return "No file part"

    file = request.files['file']

    if file.filename == '':
        return "No selected file"

    # Process the image using your attendance model
    data = predict_and_show(file)

    html_content = "<html><body><h1>Attendance Report</h1><ul>"
    for item in data:
        html_content += f"<li>{item}</li>"
    html_content += "</ul></body></html>"
    
    # Create a response object with the generated HTML
    response = make_response(html_content)
    response.headers['Content-Type'] = 'text/html'
    return response


if __name__ == '__main__':
    app.run(debug=True, host='0.0.0.0', port=7860)