Spaces:
Sleeping
Sleeping
File size: 7,898 Bytes
aa212ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
from typing import List, Literal
import gradio as gr
import torch
import numpy as np
import colorsys
from diffusers import VQModel
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.wuerstchen.modeling_paella_vq_model import PaellaVQModel
from abc import abstractmethod
import torch.backends
import torch.mps
from PIL import Image
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
# abstract class VQImageRoundtripPipeline:
class ImageRoundtripPipeline:
@abstractmethod
def roundtrip_image(self, image, output_type="pil"): ...
class VQImageRoundtripPipeline(ImageRoundtripPipeline):
vqvae: VQModel
vae_scale_factor: int
vqvae_processor: VaeImageProcessor
def __init__(self):
self.vqvae = VQModel.from_pretrained("amused/amused-512", subfolder="vqvae")
self.vqvae.eval()
self.vqvae.to(device)
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
self.vqvae_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_normalize=False
)
print("VQ-GAN model loaded", self.vqvae)
def roundtrip_image(self, image, output_type="pil"):
image = self.vqvae_processor.preprocess(image)
device = self.vqvae.device
needs_upcasting = (
self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
)
batch_size, im_channels, height, width = image.shape
if needs_upcasting:
self.vqvae.float()
latents = self.vqvae.encode(
image.to(dtype=self.vqvae.dtype, device=device)
).latents
latents_batch_size, latent_channels, latents_height, latents_width = (
latents.shape
)
latents = self.vqvae.quantize(latents)[2][2].reshape(
batch_size, latents_height, latents_width
)
output = self.vqvae.decode(
latents,
force_not_quantize=True,
shape=(
batch_size,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
self.vqvae.config.latent_channels,
),
).sample.clip(0, 1)
output = self.vqvae_processor.postprocess(output, output_type)
if needs_upcasting:
self.vqvae.half()
return output[0], latents.cpu().numpy(), self.vqvae.config.num_vq_embeddings
class PaellaImageRoundtripPipeline(ImageRoundtripPipeline):
vqgan: PaellaVQModel
vae_scale_factor: int
vqvae_processor: VaeImageProcessor
def __init__(self):
self.vqgan = PaellaVQModel.from_pretrained(
"warp-ai/wuerstchen", subfolder="vqgan"
)
self.vqgan.eval()
self.vqgan.to(device)
self.vae_scale_factor = 4
self.vqvae_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_normalize=False
)
print("Paella VQ-GAN model loaded", self.vqgan)
def roundtrip_image(self, image, output_type="pil"):
image = self.vqvae_processor.preprocess(image)
device = self.vqgan.device
batch_size, im_channels, height, width = image.shape
latents = self.vqgan.encode(
image.to(dtype=self.vqgan.dtype, device=device)
).latents
latents_batch_size, latent_channels, latents_height, latents_width = (
latents.shape
)
# latents = latents * self.vqgan.config.scale_factor
# Manually quantize so we can inspect
latents_q = self.vqgan.vquantizer(latents)[2][2].reshape(
batch_size, latents_height, latents_width
)
print("latents after quantize", (latents_q.shape, latents_q.dtype))
images = self.vqgan.decode(latents).sample.clamp(0, 1)
output = self.vqvae_processor.postprocess(images, output_type)
# if needs_upcasting:
# self.vqgan.half()
return output[0], latents_q.cpu().numpy(), self.vqgan.config.num_vq_embeddings
pipeline_paella = PaellaImageRoundtripPipeline()
pipeline_vq = VQImageRoundtripPipeline()
# Function to generate a list of unique colors
def generate_unique_colors_hsl(n):
colors = []
for i in range(n):
hue = i / (n // 4) # Distribute hues evenly around the color wheel 4 times
lightness = 0.8 - (i / n) * 0.6 # Decrease brightness from 0.8 to 0.2
saturation = 1.0
rgb = colorsys.hls_to_rgb(hue, lightness, saturation)
rgb = tuple(int(255 * x) for x in rgb)
colors.append(rgb)
return colors
# Function to create the image from VQGAN tokens
def vqgan_tokens_to_image(tokens, codebook_size, downscale_factor):
# Generate unique colors for each token in the codebook
colors = generate_unique_colors_hsl(codebook_size)
# Create a lookup table
lookup_table = np.array(colors, dtype=np.uint8)
# Extract the token array (remove the batch dimension)
token_array = tokens[0]
# Map tokens to their RGB colors using the lookup table
color_image = lookup_table[token_array]
# Create a PIL image from the numpy array
img = Image.fromarray(color_image, "RGB")
# Upscale the image using nearest neighbor interpolation
img = img.resize(
(
color_image.shape[1] * downscale_factor,
color_image.shape[0] * downscale_factor,
),
Image.NEAREST,
)
return img
# This is a gradio space that lets you encode an image with various encoder-decoder pairs, eg VQ-GAN, SDXL's VAE, etc and check the image quality
# def image_grid_to_string(image_grid):
# """Convert a latent vq index "image" grid to a string, input shape is (1, height, width)"""
# return "\n".join(
# [" ".join([str(int(x)) for x in row]) for row in image_grid.squeeze()]
# )
def describe_shape(shape):
return f"Shape: {shape} num elements: {np.prod(shape)}"
# @spaces.GPU
@torch.no_grad()
def roundtrip_image(
image,
model: List[Literal["vqgan", Literal["paella"]]],
size: List[Literal["256x256", "512x512", "1024x1024"]],
output_type="pil",
):
if size == "256x256":
image = image.resize((256, 256))
elif size == "512x512":
image = image.resize((512, 512))
elif size == "1024x1024":
image = image.resize((1024, 1024))
else:
raise ValueError(f"Unknown size {size}")
if model == "vqgan":
image, latents, codebook_size = pipeline_vq.roundtrip_image(image, output_type)
return (
image,
vqgan_tokens_to_image(
latents, codebook_size, downscale_factor=pipeline_vq.vae_scale_factor
),
describe_shape(latents.shape),
)
elif model == "paella":
image, latents, codebook_size = pipeline_paella.roundtrip_image(
image, output_type
)
return (
image,
vqgan_tokens_to_image(
latents, codebook_size, downscale_factor=pipeline_vq.vae_scale_factor
),
describe_shape(latents.shape),
)
else:
raise ValueError(f"Unknown model {model}")
demo = gr.Interface(
fn=roundtrip_image,
inputs=[
gr.Image(type="pil"),
gr.Dropdown(["vqgan", "paella"], label="Model", value="vqgan"),
gr.Dropdown(["256x256", "512x512", "1024x1024"], label="Size", value="512x512"),
],
outputs=[
gr.Image(label="Reconstructed"),
gr.Image(label="Tokens"),
gr.Text(label="VQ Shape"),
],
title="Image Tokenizer Playground",
description="Round-trip an image through an encode-decoder pair to see the quality loss from the VQ-GAN for image generation, etc.",
)
demo.launch()
|