File size: 18,650 Bytes
051c4a2
b5d1360
 
051c4a2
 
 
 
 
 
 
 
b5d1360
051c4a2
b5d1360
 
051c4a2
b5d1360
051c4a2
 
 
 
b5d1360
051c4a2
b5d1360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
051c4a2
b5d1360
051c4a2
 
 
 
 
b5d1360
051c4a2
 
 
b5d1360
 
051c4a2
b5d1360
051c4a2
 
b5d1360
 
 
 
051c4a2
 
 
 
 
 
 
 
b5d1360
051c4a2
 
 
 
 
 
b5d1360
051c4a2
 
 
 
b5d1360
051c4a2
 
 
 
 
 
b5d1360
051c4a2
b5d1360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
051c4a2
b5d1360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
051c4a2
b5d1360
 
 
 
acbf5ce
 
 
26ee8cf
acbf5ce
 
26ee8cf
acbf5ce
 
 
 
 
 
b5d1360
acbf5ce
26ee8cf
3187c86
acbf5ce
 
 
b5d1360
26ee8cf
 
acbf5ce
 
 
 
 
b5d1360
 
acbf5ce
 
b5d1360
acbf5ce
b5d1360
 
 
acbf5ce
b5d1360
 
 
acbf5ce
b5d1360
 
26ee8cf
051c4a2
b5d1360
051c4a2
acbf5ce
051c4a2
b5d1360
051c4a2
26ee8cf
b5d1360
 
 
 
 
 
 
 
26ee8cf
 
 
 
 
b5d1360
26ee8cf
b5d1360
26ee8cf
 
b5d1360
 
26ee8cf
 
051c4a2
 
 
 
b5d1360
 
 
 
051c4a2
b5d1360
26ee8cf
 
 
 
b5d1360
 
 
 
 
 
 
 
 
 
26ee8cf
051c4a2
 
b5d1360
26ee8cf
b5d1360
 
acbf5ce
051c4a2
 
b5d1360
79aa6e9
 
b5d1360
 
 
 
 
 
 
 
 
 
 
 
051c4a2
 
b5d1360
 
 
 
26ee8cf
b5d1360
051c4a2
 
 
b5d1360
 
051c4a2
b5d1360
 
 
 
051c4a2
b5d1360
26ee8cf
b5d1360
 
 
 
051c4a2
b5d1360
acbf5ce
b5d1360
 
051c4a2
b5d1360
 
acbf5ce
051c4a2
b5d1360
051c4a2
b5d1360
 
 
 
 
 
 
 
 
 
acbf5ce
051c4a2
b5d1360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
051c4a2
b5d1360
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
# web_indexer_universal_v7.py
# EGYSZERŰSÍTETT VERZIÓ: A szinonima-kezelés teljesen eltávolítva.
# Támogatja az Elastic Cloud-ot, biztonságos konfigurációkezeléssel.

import os
import time
import traceback
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin, urlparse
from collections import deque
from elasticsearch import Elasticsearch, helpers, exceptions as es_exceptions
import sys
import warnings
from dotenv import load_dotenv

# === ANSI Színkódok (konzol loggoláshoz) ===
GREEN = '\033[92m'
YELLOW = '\033[93m'
RED = '\033[91m'
RESET = '\033[0m'
BLUE = '\033[94m'
CYAN = '\033[96m'
MAGENTA = '\033[95m'


# --- Konfiguráció betöltése környezeti változókból ---
load_dotenv()

CONFIG = {
    # --- Alap beállítások (felülírhatók .env fájlból) ---
    "START_URL": os.getenv("START_URL", "https://www.dunaelektronika.com/"),
    "MAX_DEPTH": int(os.getenv("MAX_DEPTH", 2)),
    "REQUEST_DELAY": int(os.getenv("REQUEST_DELAY", 1)),
    "USER_AGENT": os.getenv("USER_AGENT", "MyPythonCrawler/1.0 (+http://example.com/botinfo)"),
    "VECTOR_INDEX_NAME": os.getenv("VECTOR_INDEX_NAME", "dunawebindexai"),
    "BATCH_SIZE": int(os.getenv("BATCH_SIZE", 50)),
    "ES_CLIENT_TIMEOUT": int(os.getenv("ES_CLIENT_TIMEOUT", 120)),
    "EMBEDDING_MODEL_NAME": 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
    "CHUNK_SIZE_TOKENS": int(os.getenv("CHUNK_SIZE_TOKENS", 500)),
    "CHUNK_OVERLAP_TOKENS": int(os.getenv("CHUNK_OVERLAP_TOKENS", 50)),
    "MIN_CHUNK_SIZE_CHARS": int(os.getenv("MIN_CHUNK_SIZE_CHARS", 50)),
    "LLM_MODEL_NAME": "meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
    "LLM_CHUNK_MODEL": "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "DEBUG_MODE": os.getenv("DEBUG_MODE", "True").lower() == 'true',

    # --- Kötelező, érzékeny adatok ---
    "ES_CLOUD_ID": os.getenv("ES_CLOUD_ID"),
    "ES_API_KEY": os.getenv("ES_API_KEY"),
    "TOGETHER_API_KEY": os.getenv("TOGETHER_API_KEY")
}

CONFIG["TARGET_DOMAIN"] = urlparse(CONFIG["START_URL"]).netloc

embedding_model = None
EMBEDDING_DIM = None
device = 'cpu'
together_client = None

# --- LLM és egyéb könyvtárak ellenőrzése és importálása ---
try:
    import torch
    TORCH_AVAILABLE = True
except ImportError:
    TORCH_AVAILABLE = False
    print(f"{RED}FIGYELEM: Torch nincs telepítve.{RESET}")

try:
    import together
    if not CONFIG["TOGETHER_API_KEY"]:
        print(f"{RED}Hiba: TOGETHER_API_KEY nincs beállítva.{RESET}")
    else:
        together_client = together.Together(api_key=CONFIG["TOGETHER_API_KEY"])
        print(f"{GREEN}Together AI kliens inicializálva.{RESET}")
except ImportError:
    print(f"{YELLOW}Figyelem: together könyvtár nincs telepítve.{RESET}")
    together_client = None
except Exception as e:
    print(f"{RED}Hiba LLM backend inicializálásakor: {e}{RESET}")
    together_client = None

try:
    import tiktoken
    tiktoken_encoder = tiktoken.get_encoding("cl100k_base")
    TIKTOKEN_AVAILABLE = True
except ImportError:
    TIKTOKEN_AVAILABLE = False
    print(f"{YELLOW}Figyelem: tiktoken nincs telepítve.{RESET}")

try:
    import nltk
    try:
        nltk.data.find('tokenizers/punkt')
    except LookupError:
        print(f"{CYAN}NLTK 'punkt' letöltése...{RESET}");
        nltk.download('punkt', quiet=True)
    NLTK_AVAILABLE = True
except ImportError:
    NLTK_AVAILABLE = False
    print(f"{RED}HIBA: 'nltk' nincs telepítve!{RESET}")

try:
    from sentence_transformers import SentenceTransformer
    SENTENCE_TRANSFORMER_AVAILABLE = True
except ImportError:
    SENTENCE_TRANSFORMER_AVAILABLE = False
    print(f"{RED}HIBA: 'sentence-transformers' nincs telepítve!{RESET}")

try:
    sys.stdout.reconfigure(encoding='utf-8')
    sys.stderr.reconfigure(encoding='utf-8')
except AttributeError:
    pass

# --- LLM HÁTTÉR FUNKCIÓK ---
def generate_categories_with_llm(llm_client, soup, text):
    category_list = ['IT biztonsági szolgáltatások', 'szolgáltatások', 'hardver', 'szoftver', 'hírek', 'audiovizuális konferenciatechnika']
    try:
        breadcrumb = soup.find('nav', class_='breadcrumb')
        if breadcrumb:
            categories = [li.get_text(strip=True) for li in breadcrumb.find_all('li')]
            if categories:
                final_category_from_html = categories[-1]
                for cat in category_list:
                    if cat.lower() in final_category_from_html.lower():
                        return [cat]
    except Exception: pass
    try:
        h1_tag = soup.find('h1')
        if h1_tag and h1_tag.get_text(strip=True):
            h1_text = h1_tag.get_text(strip=True)
            for cat in category_list:
                if cat.lower() in h1_text.lower():
                    return [cat]
    except Exception: pass
    if not llm_client: return ['egyéb']
    try:
        categories_text = ", ".join([f"'{cat}'" for cat in category_list])
        prompt = f"""Adott egy weboldal szövege. Adj meg egyetlen, rövid kategóriát a következő listából, ami a legjobban jellemzi a tartalmát. A válaszodban csak a kategória szerepeljen, más szöveg nélkül.
Lehetséges kategóriák: {categories_text}
Szöveg: {text[:1000]}
Kategória:"""
        response = llm_client.chat.completions.create(model=CONFIG["LLM_CHUNK_MODEL"], messages=[{"role": "user", "content": prompt}], temperature=0.1, max_tokens=30)
        if response and response.choices:
            category = response.choices[0].message.content.strip().replace("'", "").replace("`", "")
            for cat in category_list:
                if cat.lower() in category.lower():
                    return [cat]
    except Exception as e:
        print(f"{RED}Hiba LLM kategorizáláskor: {e}{RESET}")
    return ['egyéb']

def generate_summary_with_llm(llm_client, text):
    if not llm_client: return text[:300] + "..."
    try:
        prompt = f"""Készíts egy rövid, de informatív összefoglalót a következő szövegről. A lényeges pontokat emeld ki, de ne lépd túl a 200 szó terjedelmet.
Szöveg: {text}
Összefoglalás:"""
        response = llm_client.chat.completions.create(model=CONFIG["LLM_CHUNK_MODEL"], messages=[{"role": "user", "content": prompt}], temperature=0.5, max_tokens=500)
        if response and response.choices:
            return response.choices[0].message.content.strip()
    except Exception as e:
        print(f"{RED}Hiba LLM összefoglaláskor: {e}{RESET}")
    return text[:300] + "..."

def chunk_text_by_tokens(text, chunk_size, chunk_overlap):
    if not TIKTOKEN_AVAILABLE or not NLTK_AVAILABLE:
        chunks = []; start = 0
        while start < len(text):
            end = start + chunk_size; chunks.append(text[start:end]); start += chunk_size - chunk_overlap
        return chunks
    tokens = tiktoken_encoder.encode(text); chunks = []; start = 0
    while start < len(tokens):
        end = start + chunk_size; chunk_tokens = tokens[start:end]; chunks.append(tiktoken_encoder.decode(chunk_tokens)); start += chunk_size - chunk_overlap
    return chunks

# --- Modellek és Eszközök Inicializálása ---
def load_embedding_model():
    global embedding_model, EMBEDDING_DIM, device
    if not TORCH_AVAILABLE or not SENTENCE_TRANSFORMER_AVAILABLE: EMBEDDING_DIM = 768; device = 'cpu'; return None, EMBEDDING_DIM, device
    if embedding_model and EMBEDDING_DIM: return embedding_model, EMBEDDING_DIM, device
    print(f"\n'{CONFIG['EMBEDDING_MODEL_NAME']}' modell betöltése...")
    try:
        current_device = 'cuda' if torch.cuda.is_available() else 'cpu'
        model = SentenceTransformer(CONFIG['EMBEDDING_MODEL_NAME'], device=current_device)
        print(f"ST modell betöltve, eszköz: {model.device}")
        dim = model.get_sentence_embedding_dimension()
        if not dim: raise ValueError("Dim error")
        embedding_model = model; EMBEDDING_DIM = dim; device = current_device
        return embedding_model, EMBEDDING_DIM, device
    except Exception as e:
        print(f"{RED}Hiba embedding modell betöltésekor: {e}{RESET}"); traceback.print_exc()
        embedding_model = None; EMBEDDING_DIM = 768; device = 'cpu'
        return None, EMBEDDING_DIM, device

embedding_model, EMBEDDING_DIM, device = load_embedding_model()

# === Index Beállítások & Mapping (Szinonimák nélkül) ===
INDEX_SETTINGS = {
    "analysis": {
        "filter": {
            "hungarian_stop": {"type": "stop", "stopwords": "_hungarian_"},
            "hungarian_stemmer": {"type": "stemmer", "language": "hungarian"}
        },
        "analyzer": {
            "hungarian_analyzer": {
                "tokenizer": "standard",
                "filter": ["lowercase", "hungarian_stop", "hungarian_stemmer"]
            }
        }
    }
}
INDEX_MAPPINGS_WEB = {
    "properties": {
        "text_content": {"type": "text", "analyzer": "hungarian_analyzer"},
        "embedding": {"type": "dense_vector", "dims": EMBEDDING_DIM, "index": True, "similarity": "cosine"},
        "source_origin": {"type": "keyword"},
        "source_url": {"type": "keyword"},
        "source_type": {"type": "keyword"},
        "category": {"type": "keyword"},
        "heading": {"type": "text", "analyzer": "hungarian_analyzer"},
        "summary": {"type": "text", "analyzer": "hungarian_analyzer"}
    }
}

# --- Segédfüggvények ---
def initialize_es_client():
    if not CONFIG["ES_CLOUD_ID"] or not CONFIG["ES_API_KEY"]:
        print(f"{RED}Hiba: Az ES_CLOUD_ID és ES_API_KEY környezeti változók beállítása kötelező!{RESET}")
        return None
    try:
        if CONFIG["DEBUG_MODE"]: print("\nKapcsolódás az Elasticsearch-hez (Cloud ID)...")
        client = Elasticsearch(
            cloud_id=CONFIG["ES_CLOUD_ID"],
            api_key=CONFIG["ES_API_KEY"],
            request_timeout=CONFIG["ES_CLIENT_TIMEOUT"]
        )
        if client.ping():
            if CONFIG["DEBUG_MODE"]: print(f"{GREEN}Sikeres Elastic Cloud kapcsolat!{RESET}")
            return client
    except Exception as e:
        print(f"{RED}Hiba az Elastic Cloud kapcsolat során: {e}{RESET}")
    return None

def get_embedding(text):
    if not embedding_model or not text or not isinstance(text, str): return None
    try:
        return embedding_model.encode(text, normalize_embeddings=True).tolist()
    except Exception as e:
        print(f"{RED}Hiba embedding közben: {e}{RESET}"); return None

def create_es_index(client, index_name, index_settings, index_mappings):
    if not EMBEDDING_DIM:
        print(f"{RED}Hiba: Embedding dimenzió nincs beállítva.{RESET}")
        return False
    try:
        index_mappings["properties"]["embedding"]["dims"] = EMBEDDING_DIM
    except KeyError:
        print(f"{RED}Hiba: Érvénytelen mapping struktúra.{RESET}")
        return False
    try:
        if not client.indices.exists(index=index_name):
            print(f"'{index_name}' index létrehozása...")
            client.indices.create(index=index_name, settings=index_settings, mappings=index_mappings)
            print(f"{GREEN}Index sikeresen létrehozva.{RESET}")
            time.sleep(2)
        else:
            if CONFIG["DEBUG_MODE"]: print(f"Index '{index_name}' már létezik.")
        return True
    except Exception as e:
        print(f"{RED}Hiba az index létrehozása során: {e}{RESET}")
        traceback.print_exc()
        return False

def extract_text_from_html(html_content):
    try:
        soup = BeautifulSoup(html_content, 'html.parser')
        for element in soup(["script", "style", "nav", "footer", "header", "aside", "form"]):
            if element: element.decompose()
        main_content = soup.find('main') or soup.find('article') or soup.body
        if main_content:
            return "\n".join(line for line in main_content.get_text(separator='\n', strip=True).splitlines() if line.strip())
    except Exception as e:
        print(f"{RED}Hiba a HTML szöveg kinyerése során: {e}{RESET}")
    return ""

def extract_and_filter_links(soup, base_url, target_domain):
    links = set()
    try:
        for a_tag in soup.find_all('a', href=True):
            href = a_tag['href'].strip()
            if href and not href.startswith(('#', 'mailto:', 'javascript:')):
                full_url = urljoin(base_url, href)
                parsed_url = urlparse(full_url)
                if parsed_url.scheme in ['http', 'https'] and parsed_url.netloc == target_domain:
                    links.add(parsed_url._replace(fragment="").geturl())
    except Exception as e:
        print(f"{RED}Hiba a linkek kinyerése során: {e}{RESET}")
    return links

def crawl_and_index_website(start_url, max_depth, es_client, index_name):
    if not es_client or not embedding_model: return 0
    visited_urls, urls_to_visit = set(), deque([(start_url, 0)])
    bulk_actions = []
    total_prepared, total_indexed = 0, 0
    target_domain = urlparse(start_url).netloc
    print(f"Web crawling indítása: {start_url} (Max mélység: {max_depth}, Cél: {target_domain})")
    while urls_to_visit:
        current_url = None
        try:
            current_url, current_depth = urls_to_visit.popleft()
            if current_url in visited_urls or current_depth > max_depth: continue
            print(f"\n--- Feldolgozás (Mélység: {current_depth}): {current_url} ---")
            visited_urls.add(current_url)
            try:
                headers = {'User-Agent': CONFIG["USER_AGENT"]}
                response = requests.get(current_url, headers=headers, timeout=15)
                response.raise_for_status()
                if 'text/html' not in response.headers.get('content-type', '').lower():
                    print(f"  {YELLOW}-> Nem HTML tartalom, kihagyva.{RESET}"); continue
                html_content = response.content
            except requests.exceptions.RequestException as req_err:
                print(f"  {RED}!!! Hiba a letöltés során: {req_err}{RESET}"); continue
            soup = BeautifulSoup(html_content, 'html.parser')
            page_text = extract_text_from_html(html_content)
            if not page_text or len(page_text) < CONFIG["MIN_CHUNK_SIZE_CHARS"]:
                print(f"  {YELLOW}-> Túl rövid szöveg, kihagyva.{RESET}"); continue
            final_chunks = chunk_text_by_tokens(page_text, CONFIG["CHUNK_SIZE_TOKENS"], CONFIG["CHUNK_OVERLAP_TOKENS"])
            url_category = generate_categories_with_llm(together_client, soup, page_text)[0]
            page_summary = generate_summary_with_llm(together_client, page_text)
            if not final_chunks: continue
            for chunk_text in final_chunks:
                element_vector = get_embedding(chunk_text)
                if element_vector:
                    total_prepared += 1
                    doc = {"text_content": chunk_text, "embedding": element_vector, "source_origin": "website", "source_url": current_url, "source_type": "token_chunking", "category": url_category, "summary": page_summary}
                    bulk_actions.append({"_index": index_name, "_source": doc})
                    if len(bulk_actions) >= CONFIG["BATCH_SIZE"]:
                        success_count, errors = helpers.bulk(es_client, bulk_actions, raise_on_error=False, request_timeout=CONFIG["ES_CLIENT_TIMEOUT"])
                        total_indexed += success_count; bulk_actions = []
                        if errors: print(f"{RED}!!! Hiba a bulk indexelés során: {len(errors)} sikertelen.{RESET}")
            if current_depth < max_depth:
                new_links = extract_and_filter_links(soup, current_url, target_domain)
                for link in new_links:
                    if link not in visited_urls: urls_to_visit.append((link, current_depth + 1))
            time.sleep(CONFIG['REQUEST_DELAY'])
        except KeyboardInterrupt: print("\nFolyamat megszakítva."); break
        except Exception as loop_err: print(f"{RED}!!! Hiba a ciklusban ({current_url}): {loop_err}{RESET}"); traceback.print_exc(); time.sleep(5)
    if bulk_actions:
        success_count, errors = helpers.bulk(es_client, bulk_actions, raise_on_error=False, request_timeout=CONFIG["ES_CLIENT_TIMEOUT"])
        total_indexed += success_count
        if errors: print(f"{RED}!!! Hiba a maradék indexelése során: {len(errors)} sikertelen.{RESET}")
    print(f"\n--- Web Crawling Befejezve ---")
    print(f"Meglátogatott URL-ek: {len(visited_urls)}")
    print(f"Előkészített chunk-ok: {total_prepared}")
    print(f"Sikeresen indexelt chunk-ok: {total_indexed}")
    return total_indexed

# --- Fő futtatási blokk ---
if __name__ == "__main__":
    print(f"----- Web Crawler és Indexelő Indítása a '{CONFIG['VECTOR_INDEX_NAME']}' indexbe -----")
    print(f"----- Cél URL: {CONFIG['START_URL']} (Max mélység: {CONFIG['MAX_DEPTH']}) -----")
    print("****** FIGYELEM ******")
    print(f"Ez a script létrehozza/használja a '{CONFIG['VECTOR_INDEX_NAME']}' indexet.")
    print(f"{RED}Ha a '{CONFIG['VECTOR_INDEX_NAME']}' index már létezik, TÖRÖLD manuálisan futtatás előtt!{RESET}")
    print("********************")
    if not all([TORCH_AVAILABLE, SENTENCE_TRANSFORMER_AVAILABLE, embedding_model, EMBEDDING_DIM]):
        print(f"{RED}Hiba: AI modellek hiányoznak. Leállás.{RESET}"); exit(1)
    if not CONFIG["TOGETHER_API_KEY"]:
        print(f"{RED}Hiba: TOGETHER_API_KEY hiányzik. Leállás.{RESET}"); exit(1)
    
    es_client = initialize_es_client()
    if not es_client:
        print(f"{RED}Hiba: Elasticsearch kliens inicializálása sikertelen. Leállás.{RESET}"); exit(1)

    final_success_count = 0
    index_ready = create_es_index(
        client=es_client, 
        index_name=CONFIG["VECTOR_INDEX_NAME"],
        index_settings=INDEX_SETTINGS,
        index_mappings=INDEX_MAPPINGS_WEB
    )

    if index_ready:
        print(f"\nIndex '{CONFIG['VECTOR_INDEX_NAME']}' kész. Crawling indítása...")
        final_success_count = crawl_and_index_website(
            start_url=CONFIG["START_URL"],
            max_depth=CONFIG["MAX_DEPTH"],
            es_client=es_client,
            index_name=CONFIG["VECTOR_INDEX_NAME"]
        )
    else:
        print(f"{RED}Hiba: Index létrehozása sikertelen. Leállás.{RESET}")
    
    print("\n----- Feldolgozás Befejezve -----")
    if index_ready and final_success_count > 0:
        print(f"\n{GREEN}Sikeres. {final_success_count} chunk indexelve '{CONFIG['VECTOR_INDEX_NAME']}'-be.{RESET}")
    elif index_ready and final_success_count == 0:
        print(f"{YELLOW}Crawling lefutott, de 0 chunk lett indexelve.{RESET}")
    else:
        print(f"{RED}A folyamat hibával zárult.{RESET}")