File size: 10,560 Bytes
52b089b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import json
import os
from datetime import datetime
from typing import Dict, List, Optional
from smolagents import Tool
import plotly.graph_objects as go
import plotly.express as px
from jinja2 import Template

class ReportGeneratorTool(Tool):
    """Tool for generating interactive HTML vulnerability reports with charts."""
    
    name = "generate_vulnerability_report"
    description = "Generates an interactive HTML report with charts and vulnerability analysis. The report is generated from CVEDB search results."
    inputs = {
        "vulnerability_data": {
            "type": "string",
            "description": "Vulnerability data in JSON format",
        },
        "report_type": {
            "type": "string",
            "description": "Report type: 'cve' for a specific CVE or 'product' for a product",
        }
    }
    output_type = "string"
    
    def __init__(self):
        super().__init__()
        
        # Base HTML template
        self.html_template = """
        <!DOCTYPE html>
        <html>
        <head>
            <title>Vulnerability Report</title>
            <script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
            <style>
                body { font-family: Arial, sans-serif; margin: 20px; }
                .container { max-width: 1200px; margin: 0 auto; }
                .header { text-align: center; margin-bottom: 30px; }
                .section { margin-bottom: 40px; }
                .chart { margin: 20px 0; }
                .summary { background-color: #f5f5f5; padding: 20px; border-radius: 5px; }
                .critical { color: #dc3545; }
                .high { color: #fd7e14; }
                .medium { color: #ffc107; }
                .low { color: #28a745; }
            </style>
        </head>
        <body>
            <div class="container">
                <div class="header">
                    <h1>Vulnerability Report</h1>
                    <p>Generated on {{ generation_date }}</p>
                </div>
                
                <div class="section">
                    <h2>Summary</h2>
                    <div class="summary">
                        {{ summary }}
                    </div>
                </div>
                
                <div class="section">
                    <h2>Severity Distribution (CVSS)</h2>
                    <div id="cvss_chart" class="chart"></div>
                </div>
                
                <div class="section">
                    <h2>Temporal Trend</h2>
                    <div id="timeline_chart" class="chart"></div>
                </div>
                
                <div class="section">
                    <h2>Vulnerability Details</h2>
                    {{ vulnerabilities_table }}
                </div>
            </div>
            
            <script>
                {{ plotly_js }}
            </script>
        </body>
        </html>
        """

    def forward(self, vulnerability_data: str, report_type: str) -> str:
        """Generates an HTML report with interactive charts from vulnerability data."""
        try:
            data = json.loads(vulnerability_data)
            
            # Generate charts with Plotly
            cvss_chart = self._generate_cvss_chart(data)
            timeline_chart = self._generate_timeline_chart(data)
            
            # Generate vulnerability table
            vulnerabilities_table = self._generate_vulnerabilities_table(data)
            
            # Generate summary
            summary = self._generate_summary(data, report_type)
            
            # Render template
            template = Template(self.html_template)
            html = template.render(
                generation_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                summary=summary,
                vulnerabilities_table=vulnerabilities_table,
                plotly_js=f"""
                    var cvssData = {cvss_chart};
                    var timelineData = {timeline_chart};
                    Plotly.newPlot('cvss_chart', cvssData.data, cvssData.layout);
                    Plotly.newPlot('timeline_chart', timelineData.data, timelineData.layout);
                """
            )
            
            # Save the report to the reports folder
            # NOTE: Only saves to folder when running locally
            # If deployed on a Hugging Face Space, it doesn't save files
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            filename = f"vulnerability_report_{report_type}_{timestamp}.html"
            
            # Create the reports folder if it doesn't exist
            reports_dir = "reports"
            if not os.path.exists(reports_dir):
                os.makedirs(reports_dir)
            
            # Save the file
            filepath = os.path.join(reports_dir, filename)
            with open(filepath, 'w', encoding='utf-8') as f:
                f.write(html)
            
            return f"Report generated and saved as: {filepath}\n\n{html}"
            
        except Exception as e:
            return f"Error generating report: {str(e)}"

    def _generate_cvss_chart(self, data: Dict) -> Dict:
        """Generates a CVSS score distribution chart."""
        if isinstance(data, list):
            cvss_scores = [v.get('cvss', 0) for v in data if 'cvss' in v]
        else:
            cvss_scores = [data.get('cvss', 0)] if 'cvss' in data else []
            
        fig = go.Figure()
        fig.add_trace(go.Histogram(
            x=cvss_scores,
            nbinsx=10,
            name='CVSS Scores'
        ))
        
        fig.update_layout(
            title='CVSS Score Distribution',
            xaxis_title='CVSS Score',
            yaxis_title='Number of Vulnerabilities',
            showlegend=False
        )
        
        return fig.to_json()

    def _generate_timeline_chart(self, data: Dict) -> Dict:
        """Generates a vulnerability timeline chart."""
        if isinstance(data, list):
            dates = [v.get('published_time', '') for v in data if 'published_time' in v]
        else:
            dates = [data.get('published_time', '')] if 'published_time' in data else []
            
        # Convert dates to datetime format and count by month
        from collections import Counter
        from datetime import datetime
        
        date_counts = Counter()
        for date_str in dates:
            try:
                date = datetime.strptime(date_str, "%Y-%m-%dT%H:%M:%S")
                month_key = date.strftime("%Y-%m")
                date_counts[month_key] += 1
            except:
                continue
                
        months = sorted(date_counts.keys())
        counts = [date_counts[m] for m in months]
        
        fig = go.Figure()
        fig.add_trace(go.Scatter(
            x=months,
            y=counts,
            mode='lines+markers',
            name='Vulnerabilities'
        ))
        
        fig.update_layout(
            title='Vulnerability Timeline Trend',
            xaxis_title='Month',
            yaxis_title='Number of Vulnerabilities',
            showlegend=False
        )
        
        return fig.to_json()

    def _generate_vulnerabilities_table(self, data: Dict) -> str:
        """Generates an HTML table with vulnerability details."""
        if isinstance(data, list):
            vulnerabilities = data
        else:
            vulnerabilities = [data]
            
        if not vulnerabilities:
            return "<p>No vulnerability data available.</p>"
            
        table_html = """
        <table border="1" style="width: 100%; border-collapse: collapse;">
            <thead>
                <tr style="background-color: #f2f2f2;">
                    <th style="padding: 8px; text-align: left;">CVE ID</th>
                    <th style="padding: 8px; text-align: left;">CVSS Score</th>
                    <th style="padding: 8px; text-align: left;">EPSS Score</th>
                    <th style="padding: 8px; text-align: left;">Known Exploitable</th>
                    <th style="padding: 8px; text-align: left;">Publication Date</th>
                    <th style="padding: 8px; text-align: left;">Summary</th>
                </tr>
            </thead>
            <tbody>
        """
        
        for vuln in vulnerabilities:
            cvss = vuln.get('cvss', 'Not available')
            epss = vuln.get('epss', 'Not available')
            kev = vuln.get('kev', False)
            
            # Determine risk class based on CVSS score
            risk_class = ""
            if cvss != 'Not available' and isinstance(cvss, (int, float)):
                if cvss >= 7.0:
                    risk_class = "critical"
                elif cvss >= 4.0:
                    risk_class = "high"
                else:
                    risk_class = "low"
            
            table_html += f"""
                <tr class="{risk_class}">
                    <td style="padding: 8px;">{vuln.get('id', 'Not available')}</td>
                    <td style="padding: 8px;">{cvss}</td>
                    <td style="padding: 8px;">{epss}</td>
                    <td style="padding: 8px;">{'Yes' if kev else 'No'}</td>
                    <td style="padding: 8px;">{vuln.get('published_time', 'Not available')}</td>
                    <td style="padding: 8px;">{vuln.get('summary', 'Not available')[:100]}...</td>
                </tr>
            """
        
        table_html += """
            </tbody>
        </table>
        """
        
        return table_html

    def _generate_summary(self, data: Dict, report_type: str) -> str:
        """Generates a summary of the vulnerability data."""
        if isinstance(data, list):
            total_vulns = len(data)
            exploited = sum(1 for v in data if v.get('kev', False))
            avg_cvss = sum(v.get('cvss', 0) for v in data if 'cvss' in v) / max(1, sum(1 for v in data if 'cvss' in v))
        else:
            total_vulns = 1
            exploited = 1 if data.get('kev', False) else 0
            avg_cvss = data.get('cvss', 0)
        
        summary_html = f"""
        <p>Found <strong>{total_vulns}</strong> vulnerabilities.</p>
        <p>Exploited vulnerabilities: <strong>{exploited}</strong></p>
        <p>Average CVSS Score: <strong>{avg_cvss:.2f}</strong></p>
        <p>Publication date: <strong>{data.get('published_time', 'N/A')}</strong></p>
        """
        
        return summary_html