File size: 5,914 Bytes
7557345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3341488
 
81e2592
7557345
 
 
81e2592
7557345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e2592
7557345
81e2592
7557345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e2592
 
 
 
 
 
 
 
3341488
 
 
 
 
 
0799131
 
 
d9f5870
81e2592
 
 
 
 
 
7557345
81e2592
 
 
 
 
7557345
 
 
 
 
81e2592
7557345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e2592
7557345
 
 
 
 
 
 
 
 
81e2592
7557345
 
 
 
 
 
 
 
 
81e2592
7557345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import streamlit as st
import tiktoken
from loguru import logger

from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI

from langchain.document_loaders.pdf import (PyPDFLoader, PyMuPDFLoader)

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings

from langchain.memory import ConversationBufferMemory
from langchain.vectorstores import FAISS

# from streamlit_chat import message
from langchain.callbacks import get_openai_callback
from langchain.memory import StreamlitChatMessageHistory
from gtts import gTTS
from IPython.display import Audio, display

from pydub import AudioSegment

#์‚ฌ์ดํŠธ ๊ด€๋ จ ํ•จ์ˆ˜
def main():
    st.set_page_config(
        page_title="์ฐจ๋Ÿ‰์šฉ Q&A ์ฑ—๋ด‡",
        page_icon=":car:")

    st.title("์ฐจ๋Ÿ‰์šฉ Q&A ์ฑ—๋ด‡ :car:")

    if "conversation" not in st.session_state:
        st.session_state.conversation = None

    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    if "processComplete" not in st.session_state:
        st.session_state.processComplete = None

    with st.sidebar:
        uploaded_files = st.file_uploader("์ฐจ๋Ÿ‰ ๋ฉ”๋‰ด์–ผ PDF ํŒŒ์ผ์„ ๋„ฃ์–ด์ฃผ์„ธ์š”.", type=['pdf'], accept_multiple_files=True)
        openai_api_key = st.text_input("OpenAI API Key", key="chatbot_api_key", type="password")
        process = st.button("์‹คํ–‰")

    if process:
        if not openai_api_key:
            st.info("Open AIํ‚ค๋ฅผ ์ž…๋ ฅํ•ด์ฃผ์„ธ์š”.")
            st.stop()
        files_text = get_text(uploaded_files)
        text_chunks = get_text_chunks(files_text)
        vetorestore = get_vectorstore(text_chunks)

        st.session_state.conversation = get_conversation_chain(vetorestore, openai_api_key)

        st.session_state.processComplete = True

    if 'messages' not in st.session_state:
        st.session_state['messages'] = [{"role": "assistant",
                                         "content": "์•ˆ๋…•ํ•˜์„ธ์š”! ์ฃผ์–ด์ง„ ๋ฌธ์„œ์— ๋Œ€ํ•ด ๊ถ๊ธˆํ•˜์‹  ๊ฒƒ์ด ์žˆ์œผ๋ฉด ์–ธ์ œ๋“  ๋ฌผ์–ด๋ด์ฃผ์„ธ์š”!"}]

    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    history = StreamlitChatMessageHistory(key="chat_messages")

    # Chat logic
    if query := st.chat_input("์งˆ๋ฌธ์„ ์ž…๋ ฅํ•ด์ฃผ์„ธ์š”."):
        st.session_state.messages.append({"role": "user", "content": query})

        with st.chat_message("user"):
            st.markdown(query)

        with st.chat_message("assistant"):
            chain = st.session_state.conversation

            with st.spinner("Thinking..."):
                result = chain({"question": query})
                with get_openai_callback() as cb:
                    st.session_state.chat_history = result['chat_history']
                response = result['answer']
                source_documents = result['source_documents']
                
                  # Text-to-Speech ๋ณ€ํ™˜
                tts = gTTS(text=response, lang='ko')
                tts.save('output.mp3')  # ์Œ์„ฑ ํŒŒ์ผ ์ €์žฅ
    
                # ์Œ์„ฑ ํŒŒ์ผ ๋กœ๋“œ
                audio = AudioSegment.from_file("output.mp3", format="mp3")
                
                # Streamlit์—์„œ ์Œ์„ฑ ์žฌ์ƒ
                st.audio(audio.export(format='mp3').read(), start_time=0)

                st.markdown(response)
                with st.expander("์ฐธ๊ณ  ๋ฌธ์„œ ํ™•์ธ"):
                    st.markdown(source_documents[0].metadata['source'], help=source_documents[0].page_content)
                    st.markdown(source_documents[1].metadata['source'], help=source_documents[1].page_content)
                    st.markdown(source_documents[2].metadata['source'], help=source_documents[2].page_content)

        # Add assistant message to chat history
        st.session_state.messages.append({"role": "assistant", "content": response})


#ํ† ํฐํ™” ์‹œํ‚ค๋Š” ๊ณณ
def tiktoken_len(text):
    tokenizer = tiktoken.get_encoding("cl100k_base")
    tokens = tokenizer.encode(text)
    return len(tokens)

#pdfload์ฝ”๋“œ
def get_text(docs):
    doc_list = []

    for doc in docs:
        file_name = doc.name  # doc ๊ฐ์ฒด์˜ ์ด๋ฆ„์„ ํŒŒ์ผ ์ด๋ฆ„์œผ๋กœ ์‚ฌ์šฉ
        with open(file_name, "wb") as file:  # ํŒŒ์ผ์„ doc.name์œผ๋กœ ์ €์žฅ
            file.write(doc.getvalue())
            logger.info(f"Uploaded {file_name}")
        if '.pdf' in doc.name:
            loader = PyMuPDFLoader(file_name)
            documents = loader.load_and_split()

        doc_list.extend(documents)
    return doc_list

#textsplitter ์ฝ”๋“œ
def get_text_chunks(text):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=100,
        length_function=tiktoken_len
    )
    chunks = text_splitter.split_documents(text)
    return chunks

#์ž„๋ฒ ๋”ฉ ๋ฐ ๋ฒกํ„ฐ์ €์žฅ ์ฝ”๋“œ
def get_vectorstore(text_chunks):
    embeddings = HuggingFaceEmbeddings(
        model_name="jhgan/ko-sroberta-multitask",
        model_kwargs={'device': 'cpu'},
        encode_kwargs={'normalize_embeddings': True}
    )
    vectordb = FAISS.from_documents(text_chunks, embeddings)
    return vectordb

#๋ฆฌํŠธ๋ฆฌ๋ฒ„ ๋ฐ llm์ฝ”๋“œ
def get_conversation_chain(vetorestore, openai_api_key):
    llm = ChatOpenAI(openai_api_key=openai_api_key, model_name='gpt-3.5-turbo', temperature=0)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        chain_type="stuff",
        retriever=vetorestore.as_retriever(search_type='mmr', vervose=True),
        memory=ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer'),
        get_chat_history=lambda h: h,
        return_source_documents=True,
        verbose=True
    )

    return conversation_chain


if __name__ == '__main__':
    main()