File size: 8,197 Bytes
67069a4
 
 
 
 
 
 
 
 
660381a
443ee9d
67069a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a09379b
 
 
 
67069a4
a09379b
 
67069a4
a09379b
 
4268fe8
67069a4
a09379b
 
01e8c77
a09379b
01e8c77
a09379b
 
 
01e8c77
a09379b
 
 
01e8c77
a09379b
 
 
 
 
00c5c51
a09379b
 
 
00c5c51
a09379b
 
 
01e8c77
a09379b
 
 
 
01e8c77
a09379b
 
 
 
 
01e8c77
a09379b
 
 
01e8c77
a09379b
 
67069a4
a09379b
01e8c77
67069a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d440ae
67069a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from GAN.diffusion import build_model, GaussianDiffusion, DiffusionModel
import tensorflow as tf
from tensorflow.python.types.core import TensorLike
import imageio
import tempfile
import os
import io
from PIL import Image

EPS = 1e-18
class TSFeatureScaler:
    """Global time series scaler that scales all features to [0,1] then normalizes to [-1,1]"""
    
    def __init__(self) -> None:
        self.min_val = None
        self.max_val = None
        
    def fit(self, X: TensorLike) -> "TSFeatureScaler":
        """
        Fit scaler to data
        
        Args:
            X: Input tensor of shape [N, T, D] 
               (N: samples, T: timesteps, D: features)
        """
        # 计算整个数据集的全局最大最小值
        self.min_val = np.min(X)
        self.max_val = np.max(X)
        return self
    
    def transform(self, X: TensorLike) -> TensorLike:
        """
        Transform data in two steps:
        1. Scale to [0,1] using min-max scaling
        2. Normalize to [-1,1]
        """
        if self.min_val is None or self.max_val is None:
            raise ValueError("Scaler must be fitted before transform")
            
        # 1. 缩放到[0,1]
        X_scaled = (X - self.min_val) / (self.max_val - self.min_val + EPS)
        
        # 2. 归一化到[-1,1]
        X_normalized = 2.0 * X_scaled - 1.0
        
        return X_normalized
    
    def fit_transform(self, X: TensorLike) -> TensorLike:
        """Fit to data, then transform it"""
        return self.fit(X).transform(X)
    

def create_animation(frames, fps=1):
    """将帧列表转换为GIF动画数据"""
    import tempfile
    import os
    
    temp_dir = tempfile.gettempdir()
    temp_path = os.path.join(temp_dir, f"temp_{id(frames)}.gif")
    
    # 将fps转换为duration (毫秒)
    #duration = int(1000 / fps)  # 1000ms = 1s
    duration = min(1, 6.55)
    
    # 保存为GIF文件,设置循环播放
    imageio.mimsave(temp_path, frames, format='GIF', duration=duration, loop=0)  # loop=0 表示无限循环
    
    return temp_path

# def create_animation(frames, duration=0.1):
#     """创建GIF动画"""
#     duration = min(duration, 6.55)
    
#     # 数据标准化到[0,1]范围
#     frames = np.array(frames)
#     frames = (frames - frames.min()) / (frames.max() - frames.min())
    
#     # 转换为RGB图像
#     frames_rgb = []
#     for frame in frames:
#         # 创建彩色图像
#         plt.figure(figsize=(6, 4))
        
#         # 对每个特征分别绘制
    #     for i in range(frame.shape[-1]):  # 遍历最后一个维度(特征维度)
    #         plt.plot(frame[:, i], label=f'Feature {i+1}')
            
    #     plt.grid(True)
    #     plt.ylim(-0.1, 1.1)
    #     plt.legend()
        
    #     # 保存到内存
    #     buf = io.BytesIO()
    #     plt.savefig(buf, format='png')
    #     plt.close()
        
    #     # 读取图像
    #     buf.seek(0)
    #     img = Image.open(buf)
    #     frames_rgb.append(np.array(img))
    #     buf.close()
    
    # # 创建临时文件
    # with tempfile.NamedTemporaryFile(suffix='.gif', delete=False) as temp_file:
    #     temp_path = temp_file.name
        
    # # 保存GIF
    # imageio.mimsave(temp_path, frames_rgb, format='GIF', duration=duration, loop=0)
    
    # return temp_path
    

def generate_timeseries(input_file, num_samples=16):
    try:
        # 加载数据
        real_data = np.load(input_file.name)
        scaler = TSFeatureScaler()
        real_data = scaler.fit_transform(real_data)
        print(f"Loaded data shape: {real_data.shape}")
        
        # 确保数据形状正确
        expected_shape = (None, 96, 3)
        if len(real_data.shape) != 3 or real_data.shape[1:] != expected_shape[1:]:
            return None, None
        
        # 创建模型和必要的组件
        network = build_model(
            time_len=96, 
            fea_num=3,
            d_model=16,
            n_heads=2,
            encoder_type='dual'
        )
        ema_network = build_model(
            time_len=96, 
            fea_num=3,
            d_model=16,
            n_heads=2,
            encoder_type='dual'
        )
        ema_network.set_weights(network.get_weights())  
        noise_util = GaussianDiffusion(timesteps=10)
        
        print("Creating model...")
        model = DiffusionModel(
            network=network,
            ema_network=ema_network,
            timesteps=10,
            gdf_util=noise_util,
            data=real_data[:num_samples]
        )
        
        # 加载预训练权重
        checkpoint_path = "checkpoint/cp.ckpt"
        print(f"Loading weights from {checkpoint_path}")
        model.load_weights(checkpoint_path)

        
        # 生成加噪过程的动画
        print("Generating noising animation...")
        noise_frames = model.plot_noise_process_app(num_samples)
        noise_gif = create_animation(noise_frames)
        
        # 生成去噪过程的动画
        print("Generating denoising animation...")
        denoise_frames = model.plot_denoise_process_app(num_samples)[1:]
        denoise_gif = create_animation(denoise_frames)
        
        return noise_gif, denoise_gif
        
    except Exception as e:
        import traceback
        error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
        print(error_msg)
        return None, None

def update_example_gifs(num_samples):
    """根据选择的样本数更新示例GIF"""
    return f"noising_example_{num_samples}.gif", f"denoising_example_{num_samples}.gif"

# 创建Gradio界面
with gr.Blocks(title="Wearable Sensors Time-Series Generation") as demo:
    with gr.Column(elem_id="container"):
        # Logo
        gr.Image("logo.webp", elem_id="logo", show_label=False, container=False)
        
        # 标题和副标题
        gr.Markdown(
            """
            # Wearable Sensors Time-Series Generation
            
            <h3 style='font-weight: normal; color: #666;'>-- mainly targeted at livestock wearables sensors data</h3>
            """)
        
    with gr.Row():
        with gr.Column():
            noise_gif = gr.Image(value="noising_example_16.gif", label="Noising Process", show_label=True)
        with gr.Column():
            denoise_gif = gr.Image(value="denoising_example_16.gif", label="Denoising Process", show_label=True)
    
    with gr.Row():
        with gr.Column():

            num_samples = gr.Radio(
                choices=[4, 9, 16, 25],
                value=16,
                label="Number of samples to generate"
            )
            generate_btn = gr.Button("Generate")

            # 将File组件改为Examples组件
            input_file = gr.File(label="Select example data")
            gr.Examples(
                examples=[
                    ["app_examples/example1.npy"],
                    ["app_examples/example2.npy"],
                    ["app_examples/example3.npy"],
                    ["app_examples/example4.npy"]
                ],
                inputs=input_file,
                label="Example Datasets"
            )


    
    # 添加按钮事件处理
    generate_btn.click(
        fn=generate_timeseries,
        inputs=[input_file, num_samples],
        outputs=[noise_gif, denoise_gif]
    )
    
    # 添加样本数选择的事件处理
    num_samples.change(
        fn=update_example_gifs,
        inputs=[num_samples],
        outputs=[noise_gif, denoise_gif]
    )
    
    # 添加CSS样式
    gr.HTML(
        """
        <style>
        #container {
            text-align: center;
            padding: 2rem 0;
        }
        #logo {
            width: 120px;
            height: 120px;
            margin: 0 auto;
            margin-bottom: 1rem;
        }
        h1 {
            font-size: 3.5rem;
            margin-bottom: 0.5rem;
        }
        h3 {
            font-size: 1.8rem;
            margin-top: 0;
            color: #666;
        }
        </style>
        """
    )

# 启动应用
if __name__ == "__main__":
    demo.launch(share=True)