File size: 10,760 Bytes
67069a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import math
import numpy as np
import typing as T
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn
import sklearn.manifold
import tensorflow as tf
import numpy.typing as npt

from tensorflow import keras
from tensorflow.python.types.core import TensorLike

Tensor = T.Union[tf.Tensor, npt.NDArray]
OptTensor = T.Optional[Tensor]


EPS = 1e-18
class TSFeatureScaler:
    """Global time series scaler that scales all features to [0,1] then normalizes to [-1,1]"""
    
    def __init__(self) -> None:
        self.min_val = None
        self.max_val = None
        
    def fit(self, X: TensorLike) -> "TSFeatureScaler":
        """
        Fit scaler to data
        
        Args:
            X: Input tensor of shape [N, T, D] 
               (N: samples, T: timesteps, D: features)
        """
        # 计算整个数据集的全局最大最小值
        self.min_val = np.min(X)
        self.max_val = np.max(X)
        return self
    
    def transform(self, X: TensorLike) -> TensorLike:
        """
        Transform data in two steps:
        1. Scale to [0,1] using min-max scaling
        2. Normalize to [-1,1]
        """
        if self.min_val is None or self.max_val is None:
            raise ValueError("Scaler must be fitted before transform")
            
        # 1. 缩放到[0,1]
        X_scaled = (X - self.min_val) / (self.max_val - self.min_val + EPS)
        
        # 2. 归一化到[-1,1]
        X_normalized = 2.0 * X_scaled - 1.0
        
        return X_normalized
    
    def inverse_transform(self, X: TensorLike) -> TensorLike:
        """
        Inverse transform data:
        1. From [-1,1] back to [0,1]
        2. From [0,1] back to original range
        """
        if self.min_val is None or self.max_val is None:
            raise ValueError("Scaler must be fitted before inverse_transform")
            
        # 1. 从[-1,1]转回[0,1]
        X_scaled = (X + 1.0) / 2.0
        
        # 2. 从[0,1]转回原始范围
        X_original = X_scaled * (self.max_val - self.min_val + EPS) + self.min_val
        
        return X_original
    
    def fit_transform(self, X: TensorLike) -> TensorLike:
        """Fit to data, then transform it"""
        return self.fit(X).transform(X)
    
    def get_range(self) -> T.Tuple[float, float]:
        """获取原始数据的范围"""
        if self.min_val is None or self.max_val is None:
            raise ValueError("Scaler must be fitted first")
        return (self.min_val, self.max_val)


EPS = 1e-18
class TSFeatureWiseScaler():
    def __init__(self, feature_range: T.Tuple[float, float] = (0, 1)) -> None:
        assert len(feature_range) == 2

        self._min_v, self._max_v = feature_range

    # X: N x T x D
    def fit(self, X: TensorLike) -> "TSFeatureWiseScaler":
        D = X.shape[2]
        self.mins = np.zeros(D)
        self.maxs = np.zeros(D)

        for i in range(D):
            self.mins[i] = np.min(X[:, :, i])
            self.maxs[i] = np.max(X[:, :, i])

        return self

    def transform(self, X: TensorLike) -> TensorLike:
        return ((X - self.mins) / (self.maxs - self.mins + EPS)) * (self._max_v - self._min_v) + self._min_v

    def inverse_transform(self, X: TensorLike) -> TensorLike:
        X -= self._min_v
        X /= self._max_v - self._min_v
        X *= (self.maxs - self.mins + EPS)
        X += self.mins
        return X

    def fit_transform(self, X: TensorLike) -> TensorLike:
        self.fit(X)
        return self.transform(X)
 

def linear_beta_schedule(timesteps, beta_start=1e-4, beta_end=0.99): # beta_end=0.99
    betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
    return betas


def cosine_beta_schedule(timesteps, s=0.008):
    steps = timesteps + 1
    x = np.linspace(0, timesteps, steps, dtype=np.float64)
    alphas_cumprod = np.cos(((x / timesteps) + s) / (1 + s) * math.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    betas = np.clip(betas, 0, 0.999)
    return betas


def reconstruction_loss_by_axis(original: tf.Tensor, reconstructed: tf.Tensor, axis: int = 0) -> tf.Tensor:
    """
    Calculate the reconstruction loss based on a specified axis.

    This function computes the reconstruction loss between the original data and
    the reconstructed data along a specified axis. The loss can be computed in
    two ways depending on the chosen axis:

    - When `axis` is 0, it computes the loss as the sum of squared differences
      between the original and reconstructed data for all elements.
    - When `axis` is 1 or 2, it computes the mean squared error (MSE) between the
      mean values along the chosen axis for the original and reconstructed data.

    Parameters:
    ----------
    original : tf.Tensor
        The original data tensor.

    reconstructed : tf.Tensor
        The reconstructed data tensor, typically produced by an autoencoder.

    axis : int, optional (default=0)
        The axis along which to compute the reconstruction loss:
        - 0: All elements (sum of squared differences).
        - 1: Along features (MSE).
        - 2: Along time steps (MSE).

    Returns:
    -------
    tf.Tensor
        The computed reconstruction loss as a TensorFlow tensor.
    Notes:
    ------
    - This function is commonly used in the context of autoencoders and other
      reconstruction-based models to assess the quality of the reconstruction.
    - The choice of `axis` determines how the loss is calculated, and it should
      align with the data's structure.
    """

    # axis=0 all (sum of squared diffs)
    # axis=1 features (MSE)
    # axis=2 times (MSE)
    if axis == 0:
        return tf.reduce_sum(tf.math.squared_difference(original, reconstructed))
    else:
        return tf.losses.mean_squared_error(tf.reduce_mean(original, axis=axis), tf.reduce_mean(reconstructed, axis=axis))


def gen_sine_dataset(N: int, T: int, D: int, max_value: int = 10) -> npt.NDArray:
    result = []
    for i in range(N):
        result.append([])
        a = np.random.random() * max_value
        shift = np.random.random() * max_value + 1
        ts = np.arange(0, T, 1)
        for d in range(1, D + 1):
            result[-1].append((a * np.sin((d + 3) * ts / 25. + shift)).T)

    return np.transpose(np.array(result), [0, 2, 1])


def gen_sine_vs_const_dataset(N: int, T: int, D: int, max_value: int = 10, const: int = 0) -> T.Tuple[TensorLike, TensorLike]:
    result_X, result_y = [], []
    for i in range(N):
        scales = np.random.random(D) * max_value
        consts = np.random.random(D) * const
        shifts = np.random.random(D) * 2
        alpha = np.random.random()
        if np.random.random() < 0.5:
            times = np.repeat(np.arange(0, T, 1)[:, None], D, axis=1) / 10
            result_X.append(np.sin(alpha * times + shifts) * scales)
            result_y.append(0)
        else:
            result_X.append(np.tile(consts, (T, 1)))
            result_y.append(1)
    return np.array(result_X), np.array(result_y)


def visualize_ts_lineplot(
        ts: Tensor,
        ys: OptTensor = None,
        num: int = 5,
        unite_features: bool = True,
) -> None:
    assert len(ts.shape) == 3

    fig, axs = plt.subplots(num, 1, figsize=(14, 10))
    if num == 1:
        axs = [axs]

    ids = np.random.choice(ts.shape[0], size=num, replace=False)
    for i, sample_id in enumerate(ids):
        if not unite_features:
            feature_id = np.random.randint(ts.shape[2])
            sns.lineplot(
                x=range(ts.shape[1]),
                y=ts[sample_id, :, feature_id],
                ax=axs[i],
                label=rf"feature \#{feature_id}",
            )
        else:
            for feat_id in range(ts.shape[2]):
                sns.lineplot(
                    x=range(ts.shape[1]), y=ts[sample_id, :, feat_id], ax=axs[i]
                )
        if ys is not None:
            if len(ys.shape) == 1:
                axs[i].set_title(ys[sample_id])
            elif len(ys.shape) == 2:
                sns.lineplot(
                    x=range(ts.shape[1]),
                    y=ys[sample_id],
                    ax=axs[i].twinx(),
                    color="g",
                    label="Target variable",
                )
            else:
                raise ValueError("ys contains too many dimensions")
    #plt.show()

def visualize_tsne(
    X: Tensor,
    y: Tensor,
    X_gen: Tensor,
    y_gen: Tensor,
    path: str = "/tmp/tsne_embeddings.pdf",
    feature_averaging: bool = False,
    perplexity=30.0
) -> None:
    """
    Visualizes t-SNE embeddings of real and synthetic data.

    This function generates a scatter plot of t-SNE embeddings for real and synthetic data.
    Each data point is represented by a marker on the plot, and the colors of the markers
    correspond to the corresponding class labels of the data points.

    :param X: The original real data tensor of shape (num_samples, num_features).
    :type X: tsgm.types.Tensor
    :param y: The labels of the original real data tensor of shape (num_samples,).
    :type y: tsgm.types.Tensor
    :param X_gen: The generated synthetic data tensor of shape (num_samples, num_features).
    :type X_gen: tsgm.types.Tensor
    :param y_gen: The labels of the generated synthetic data tensor of shape (num_samples,).
    :type y_gen: tsgm.types.Tensor
    :param path: The path to save the visualization as a PDF file. Defaults to "/tmp/tsne_embeddings.pdf".
    :type path: str, optional
    :param feature_averaging: Whether to compute the average features for each class. Defaults to False.
    :type feature_averaging: bool, optional
    """
    tsne = sklearn.manifold.TSNE(n_components=2, perplexity=perplexity, learning_rate="auto", init="random")

    if feature_averaging:
        X_all = np.concatenate((np.mean(X, axis=2), np.mean(X_gen, axis=2)))

        X_emb = tsne.fit_transform(np.resize(X_all, (X_all.shape[0], X_all.shape[1])))
    else:
        X_all = np.concatenate((X, X_gen))

        X_emb = tsne.fit_transform(
            np.resize(X_all, (X_all.shape[0], X_all.shape[1] * X_all.shape[2]))
        )

    y_all = np.concatenate((y, y_gen))

    c = np.argmax(y_all, axis=1)
    colors = {0: "class 0", 1: "class 1"}
    c = [colors[el] for el in c]
    point_styles = ["hist"] * X.shape[0] + ["gen"] * X_gen.shape[0]

    plt.figure(figsize=(8, 6), dpi=80)
    sns.scatterplot(
        x=X_emb[:, 0],
        y=X_emb[:, 1],
        hue=c,
        style=point_styles,
        markers={"hist": "<", "gen": "H"},
        alpha=0.7,
    )
    plt.legend()
    plt.box(False)
    plt.axis("off")
    plt.savefig(path)
    plt.show()