File size: 18,026 Bytes
67069a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import os, warnings
warnings.filterwarnings('ignore')

from abc import ABC, abstractmethod
import numpy as np
import joblib
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Conv1D,  Flatten, Dense, Conv1DTranspose, Reshape, Input, Layer
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import Mean
from tensorflow.keras.backend import random_normal

class Sampling(Layer):
    """Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""

    def call(self, inputs):
        z_mean, z_log_var = inputs
        batch = tf.shape(z_mean)[0]
        dim = tf.shape(z_mean)[1]
        epsilon = random_normal(shape=(batch, dim))
        return z_mean + tf.exp(0.5 * z_log_var) * epsilon

class BaseVariationalAutoencoder(Model, ABC):
    def __init__(self,
                 seq_len,
                 feat_dim,
                 latent_dim,
                 reconstruction_wt=3.0,
                 **kwargs):
        super(BaseVariationalAutoencoder, self).__init__(**kwargs)
        self.seq_len = seq_len
        self.feat_dim = feat_dim
        self.latent_dim = latent_dim
        self.reconstruction_wt = reconstruction_wt
        self.total_loss_tracker = Mean(name="total_loss")
        self.reconstruction_loss_tracker = Mean(name="reconstruction_loss")
        self.kl_loss_tracker = Mean(name="kl_loss")

        self.encoder = None
        self.decoder = None

    def call(self, X):
        z_mean, _, _ = self.encoder(X)
        x_decoded = self.decoder(z_mean)
        if len(x_decoded.shape) == 1: x_decoded = x_decoded.reshape((1, -1))
        return x_decoded

    def get_num_trainable_variables(self):
        trainableParams = int(np.sum([np.prod(v.get_shape()) for v in self.trainable_weights]))
        nonTrainableParams = int(np.sum([np.prod(v.get_shape()) for v in self.non_trainable_weights]))
        totalParams = trainableParams + nonTrainableParams
        return trainableParams, nonTrainableParams, totalParams

    def get_prior_samples(self, num_samples):
        Z = np.random.randn(num_samples, self.latent_dim)
        samples = self.decoder.predict(Z)
        return samples

    def get_prior_samples_given_Z(self, Z):
        samples = self.decoder.predict(Z)
        return samples

    @abstractmethod
    def _get_encoder(self, **kwargs):
        raise NotImplementedError

    @abstractmethod
    def _get_decoder(self, **kwargs):
        raise NotImplementedError

    def summary(self):
        self.encoder.summary()
        self.decoder.summary()

    def _get_reconstruction_loss(self, X, X_recons):
        def get_reconst_loss_by_axis(X, X_c, axis):
            x_r = tf.reduce_mean(X, axis=axis)
            x_c_r = tf.reduce_mean(X_recons, axis=axis)
            err = tf.math.squared_difference(x_r, x_c_r)
            loss = tf.reduce_sum(err)
            return loss

        # overall
        err = tf.math.squared_difference(X, X_recons)
        reconst_loss = tf.reduce_sum(err)

        reconst_loss += get_reconst_loss_by_axis(X, X_recons, axis=[2])  # by time axis
        # reconst_loss += get_reconst_loss_by_axis(X, X_recons, axis=[1])    # by feature axis
        return reconst_loss

    def train_step(self, X):
        with tf.GradientTape() as tape:
            z_mean, z_log_var, z = self.encoder(X)

            reconstruction = self.decoder(z)

            reconstruction_loss = self._get_reconstruction_loss(X, reconstruction)

            kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
            kl_loss = tf.reduce_sum(tf.reduce_sum(kl_loss, axis=1))
            # kl_loss = kl_loss / self.latent_dim

            total_loss = self.reconstruction_wt * reconstruction_loss + kl_loss

        grads = tape.gradient(total_loss, self.trainable_weights)

        self.optimizer.apply_gradients(zip(grads, self.trainable_weights))

        self.total_loss_tracker.update_state(total_loss)
        self.reconstruction_loss_tracker.update_state(reconstruction_loss)
        self.kl_loss_tracker.update_state(kl_loss)

        return {
            "loss": self.total_loss_tracker.result(),
            "reconstruction_loss": self.reconstruction_loss_tracker.result(),
            "kl_loss": self.kl_loss_tracker.result(),
        }

    def test_step(self, X):
        z_mean, z_log_var, z = self.encoder(X)
        reconstruction = self.decoder(z)
        reconstruction_loss = self._get_reconstruction_loss(X, reconstruction)

        kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
        kl_loss = tf.reduce_sum(tf.reduce_sum(kl_loss, axis=1))
        # kl_loss = kl_loss / self.latent_dim

        total_loss = self.reconstruction_wt * reconstruction_loss + kl_loss

        self.total_loss_tracker.update_state(total_loss)
        self.reconstruction_loss_tracker.update_state(reconstruction_loss)
        self.kl_loss_tracker.update_state(kl_loss)

        return {
            "loss": self.total_loss_tracker.result(),
            "reconstruction_loss": self.reconstruction_loss_tracker.result(),
            "kl_loss": self.kl_loss_tracker.result(),
        }

    def save_weights(self, model_dir, file_pref):
        encoder_wts = self.encoder.get_weights()
        decoder_wts = self.decoder.get_weights()
        joblib.dump(encoder_wts, os.path.join(model_dir, f'{file_pref}encoder_wts.h5'))
        joblib.dump(decoder_wts, os.path.join(model_dir, f'{file_pref}decoder_wts.h5'))

    def load_weights(self, model_dir, file_pref):
        encoder_wts = joblib.load(os.path.join(model_dir, f'{file_pref}encoder_wts.h5'))
        decoder_wts = joblib.load(os.path.join(model_dir, f'{file_pref}decoder_wts.h5'))

        self.encoder.set_weights(encoder_wts)
        self.decoder.set_weights(decoder_wts)

    def save(self, model_dir, file_pref):
        self.save_weights(model_dir, file_pref)
        dict_params = {

            'seq_len': self.seq_len,
            'feat_dim': self.feat_dim,
            'latent_dim': self.latent_dim,
            'reconstruction_wt': self.reconstruction_wt,
            'hidden_layer_sizes': self.hidden_layer_sizes,
        }
        params_file = os.path.join(model_dir, f'{file_pref}parameters.pkl')
        joblib.dump(dict_params, params_file)

class TimeVAE(BaseVariationalAutoencoder):

    def __init__(self, hidden_layer_sizes, trend_poly=0, num_gen_seas=0, custom_seas=None,
                 use_scaler=False, use_residual_conn=True, **kwargs):
        '''
            hidden_layer_sizes: list of number of filters in convolutional layers in encoder and residual connection of decoder.
            trend_poly: integer for number of orders for trend component. e.g. setting trend_poly = 2 will include linear and quadratic term.
            num_gen_seas: Number of sine-waves to use to model seasonalities. Each sine wae will have its own amplitude, frequency and phase.
            custom_seas: list of tuples of (num_seasons, len_per_season).
                num_seasons: number of seasons per cycle.
                len_per_season: number of epochs (time-steps) per season.
            use_residual_conn: boolean value indicating whether to use a residual connection for reconstruction in addition to
            trend, generic and custom seasonalities.
        '''

        super(TimeVAE, self).__init__(**kwargs)

        self.hidden_layer_sizes = hidden_layer_sizes
        self.trend_poly = trend_poly
        self.num_gen_seas = num_gen_seas
        self.custom_seas = custom_seas
        self.use_scaler = use_scaler
        self.use_residual_conn = use_residual_conn
        self.encoder = self._get_encoder()
        self.decoder = self._get_decoder()

    def _get_encoder(self):
        encoder_inputs = Input(shape=(self.seq_len, self.feat_dim), name='encoder_input')
        x = encoder_inputs
        for i, num_filters in enumerate(self.hidden_layer_sizes):
            x = Conv1D(
                filters=num_filters,
                kernel_size=3,
                strides=2,
                activation='relu',
                padding='same',
                name=f'enc_conv_{i}')(x)

        x = Flatten(name='enc_flatten')(x)

        # save the dimensionality of this last dense layer before the hidden state layer. We need it in the decoder.
        self.encoder_last_dense_dim = x.get_shape()[-1]

        z_mean = Dense(self.latent_dim, name="z_mean")(x)
        z_log_var = Dense(self.latent_dim, name="z_log_var")(x)

        encoder_output = Sampling()([z_mean, z_log_var])
        self.encoder_output = encoder_output

        encoder = Model(encoder_inputs, [z_mean, z_log_var, encoder_output], name="encoder")
        return encoder

    def _get_decoder(self):
        decoder_inputs = Input(shape=(int(self.latent_dim)), name='decoder_input')

        outputs = None
        outputs = self.level_model(decoder_inputs)

        # trend polynomials
        if self.trend_poly is not None and self.trend_poly > 0:
            trend_vals = self.trend_model(decoder_inputs)
            outputs = trend_vals if outputs is None else outputs + trend_vals

            # # generic seasonalities
        # if self.num_gen_seas is not None and self.num_gen_seas > 0:
        #     gen_seas_vals, freq, phase, amplitude = self.generic_seasonal_model(decoder_inputs)
        #     # gen_seas_vals = self.generic_seasonal_model2(decoder_inputs)
        #     outputs = gen_seas_vals if outputs is None else outputs + gen_seas_vals

        # custom seasons
        if self.custom_seas is not None and len(self.custom_seas) > 0:
            cust_seas_vals = self.custom_seasonal_model(decoder_inputs)
            outputs = cust_seas_vals if outputs is None else outputs + cust_seas_vals

        if self.use_residual_conn:
            residuals = self._get_decoder_residual(decoder_inputs)
            outputs = residuals if outputs is None else outputs + residuals

        if self.use_scaler and outputs is not None:
            scale = self.scale_model(decoder_inputs)
            outputs *= scale

        # outputs = Activation(activation='sigmoid')(outputs)

        if outputs is None:
            raise Exception('''Error: No decoder model to use. 
            You must use one or more of:
            trend, generic seasonality(ies), custom seasonality(ies), and/or residual connection. ''')

        decoder = Model(decoder_inputs, [outputs], name="decoder")
        return decoder

    def level_model(self, z):
        level_params = Dense(self.feat_dim, name="level_params", activation='relu')(z)
        level_params = Dense(self.feat_dim, name="level_params2")(level_params)
        level_params = Reshape(target_shape=(1, self.feat_dim))(level_params)  # shape: (N, 1, D)

        ones_tensor = tf.ones(shape=[1, self.seq_len, 1], dtype=tf.float32)  # shape: (1, T, D)

        level_vals = level_params * ones_tensor
        return level_vals

    def scale_model(self, z):
        scale_params = Dense(self.feat_dim, name="scale_params", activation='relu')(z)
        scale_params = Dense(self.feat_dim, name="scale_params2")(scale_params)
        scale_params = Reshape(target_shape=(1, self.feat_dim))(scale_params)  # shape: (N, 1, D)

        scale_vals = tf.repeat(scale_params, repeats=self.seq_len, axis=1)  # shape: (N, T, D)
        return scale_vals

    def trend_model(self, z):
        trend_params = Dense(self.feat_dim * self.trend_poly, name="trend_params", activation='relu')(z)
        trend_params = Dense(self.feat_dim * self.trend_poly, name="trend_params2")(trend_params)
        trend_params = Reshape(target_shape=(self.feat_dim, self.trend_poly))(trend_params)  # shape: N x D x P

        lin_space = K.arange(0, float(self.seq_len), 1) / self.seq_len  # shape of lin_space : 1d tensor of length T
        poly_space = K.stack([lin_space ** float(p + 1) for p in range(self.trend_poly)], axis=0)  # shape: P x T

        trend_vals = K.dot(trend_params, poly_space)  # shape (N, D, T)
        trend_vals = tf.transpose(trend_vals, perm=[0, 2, 1])  # shape: (N, T, D)
        trend_vals = K.cast(trend_vals, tf.float32)
        return trend_vals

    def custom_seasonal_model(self, z):

        N = tf.shape(z)[0]
        ones_tensor = tf.ones(shape=[N, self.feat_dim, self.seq_len], dtype=tf.int32)

        all_seas_vals = []
        for i, season_tup in enumerate(self.custom_seas):
            num_seasons, len_per_season = season_tup

            season_params = Dense(self.feat_dim * num_seasons, name=f"season_params_{i}")(z)  # shape: (N, D * S)
            season_params = Reshape(target_shape=(self.feat_dim, num_seasons))(season_params)  # shape: (N, D, S)

            season_indexes_over_time = self._get_season_indexes_over_seq(num_seasons, len_per_season)  # shape: (T, )

            dim2_idxes = ones_tensor * tf.reshape(season_indexes_over_time, shape=(1, 1, -1))  # shape: (1, 1, T)

            season_vals = tf.gather(season_params, dim2_idxes, batch_dims=-1)  # shape (N, D, T)

            all_seas_vals.append(season_vals)

        all_seas_vals = K.stack(all_seas_vals, axis=-1)  # shape: (N, D, T, S)
        all_seas_vals = tf.reduce_sum(all_seas_vals, axis=-1)  # shape (N, D, T)
        all_seas_vals = tf.transpose(all_seas_vals, perm=[0, 2, 1])  # shape (N, T, D)
        return all_seas_vals

    def _get_season_indexes_over_seq(self, num_seasons, len_per_season):
        curr_len = 0
        season_idx = []
        curr_idx = 0
        while curr_len < self.seq_len:
            reps = len_per_season if curr_len + len_per_season <= self.seq_len else self.seq_len - curr_len
            season_idx.extend([curr_idx] * reps)
            curr_idx += 1
            if curr_idx == num_seasons: curr_idx = 0
            curr_len += reps
        return season_idx

    def generic_seasonal_model(self, z):

        freq = Dense(self.feat_dim * self.num_gen_seas, name="g_season_freq", activation='sigmoid')(z)
        freq = Reshape(target_shape=(1, self.feat_dim, self.num_gen_seas))(freq)  # shape: (N, 1, D, S)

        phase = Dense(self.feat_dim * self.num_gen_seas, name="g_season_phase")(z)
        phase = Reshape(target_shape=(1, self.feat_dim, self.num_gen_seas))(phase)  # shape: (N, 1, D, S)

        amplitude = Dense(self.feat_dim * self.num_gen_seas, name="g_season_amplitude")(z)
        amplitude = Reshape(target_shape=(1, self.feat_dim, self.num_gen_seas))(amplitude)  # shape: (N, 1, D, S)

        lin_space = K.arange(0, float(self.seq_len), 1) / self.seq_len  # shape of lin_space : 1d tensor of length T
        lin_space = tf.reshape(lin_space, shape=(1, self.seq_len, 1, 1))  # shape: 1, T, 1, 1

        seas_vals = amplitude * K.sin(2. * np.pi * freq * lin_space + phase)  # shape: N, T, D, S
        seas_vals = tf.math.reduce_sum(seas_vals, axis=-1)  # shape: N, T, D

        return seas_vals

    def generic_seasonal_model2(self, z):

        season_params = Dense(self.feat_dim * self.num_gen_seas, name="g_season_params")(z)
        season_params = Reshape(target_shape=(self.feat_dim, self.num_gen_seas))(season_params)  # shape: (D, S)

        p = self.num_gen_seas
        p1, p2 = (p // 2, p // 2) if p % 2 == 0 else (p // 2, p // 2 + 1)

        ls = K.arange(0, float(self.seq_len), 1) / self.seq_len  # shape of ls : 1d tensor of length T

        s1 = K.stack([K.cos(2 * np.pi * i * ls) for i in range(p1)], axis=0)
        s2 = K.stack([K.sin(2 * np.pi * i * ls) for i in range(p2)], axis=0)
        if p == 1:
            s = s2
        else:
            s = K.concatenate([s1, s2], axis=0)
        s = K.cast(s, np.float32)

        seas_vals = K.dot(season_params, s, name='g_seasonal_vals')
        seas_vals = tf.transpose(seas_vals, perm=[0, 2, 1])  # shape: (N, T, D)
        seas_vals = K.cast(seas_vals, np.float32)
        print('seas_vals shape', tf.shape(seas_vals))

        return seas_vals

    def _get_decoder_residual(self, x):

        x = Dense(self.encoder_last_dense_dim, name="dec_dense", activation='relu')(x)
        x = Reshape(target_shape=(-1, self.hidden_layer_sizes[-1]), name="dec_reshape")(x)

        for i, num_filters in enumerate(reversed(self.hidden_layer_sizes[:-1])):
            x = Conv1DTranspose(
                filters=num_filters,
                kernel_size=3,
                strides=2,
                padding='same',
                activation='relu',
                name=f'dec_deconv_{i}')(x)

        # last de-convolution
        x = Conv1DTranspose(
            filters=self.feat_dim,
            kernel_size=3,
            strides=2,
            padding='same',
            activation='relu',
            name=f'dec_deconv__{i + 1}')(x)

        x = Flatten(name='dec_flatten')(x)
        x = Dense(self.seq_len * self.feat_dim, name="decoder_dense_final")(x)
        residuals = Reshape(target_shape=(self.seq_len, self.feat_dim))(x)
        return residuals

    def save(self, model_dir, file_pref):

        super().save_weights(model_dir, file_pref)
        dict_params = {
            'seq_len': self.seq_len,
            'feat_dim': self.feat_dim,
            'latent_dim': self.latent_dim,
            'reconstruction_wt': self.reconstruction_wt,

            'hidden_layer_sizes': self.hidden_layer_sizes,
            'trend_poly': self.trend_poly,
            'num_gen_seas': self.num_gen_seas,
            'custom_seas': self.custom_seas,
            'use_scaler': self.use_scaler,
            'use_residual_conn': self.use_residual_conn,
        }
        params_file = os.path.join(model_dir, f'{file_pref}parameters.pkl')
        joblib.dump(dict_params, params_file)

    @staticmethod
    def load(model_dir, file_pref):
        params_file = os.path.join(model_dir, f'{file_pref}parameters.pkl')
        dict_params = joblib.load(params_file)

        vae_model = TimeVAE(**dict_params)

        vae_model.load_weights(model_dir, file_pref)

        vae_model.compile(optimizer=Adam())

        return vae_model