Spaces:
Running
Running
File size: 18,026 Bytes
67069a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import os, warnings
warnings.filterwarnings('ignore')
from abc import ABC, abstractmethod
import numpy as np
import joblib
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Conv1D, Flatten, Dense, Conv1DTranspose, Reshape, Input, Layer
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import Mean
from tensorflow.keras.backend import random_normal
class Sampling(Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
class BaseVariationalAutoencoder(Model, ABC):
def __init__(self,
seq_len,
feat_dim,
latent_dim,
reconstruction_wt=3.0,
**kwargs):
super(BaseVariationalAutoencoder, self).__init__(**kwargs)
self.seq_len = seq_len
self.feat_dim = feat_dim
self.latent_dim = latent_dim
self.reconstruction_wt = reconstruction_wt
self.total_loss_tracker = Mean(name="total_loss")
self.reconstruction_loss_tracker = Mean(name="reconstruction_loss")
self.kl_loss_tracker = Mean(name="kl_loss")
self.encoder = None
self.decoder = None
def call(self, X):
z_mean, _, _ = self.encoder(X)
x_decoded = self.decoder(z_mean)
if len(x_decoded.shape) == 1: x_decoded = x_decoded.reshape((1, -1))
return x_decoded
def get_num_trainable_variables(self):
trainableParams = int(np.sum([np.prod(v.get_shape()) for v in self.trainable_weights]))
nonTrainableParams = int(np.sum([np.prod(v.get_shape()) for v in self.non_trainable_weights]))
totalParams = trainableParams + nonTrainableParams
return trainableParams, nonTrainableParams, totalParams
def get_prior_samples(self, num_samples):
Z = np.random.randn(num_samples, self.latent_dim)
samples = self.decoder.predict(Z)
return samples
def get_prior_samples_given_Z(self, Z):
samples = self.decoder.predict(Z)
return samples
@abstractmethod
def _get_encoder(self, **kwargs):
raise NotImplementedError
@abstractmethod
def _get_decoder(self, **kwargs):
raise NotImplementedError
def summary(self):
self.encoder.summary()
self.decoder.summary()
def _get_reconstruction_loss(self, X, X_recons):
def get_reconst_loss_by_axis(X, X_c, axis):
x_r = tf.reduce_mean(X, axis=axis)
x_c_r = tf.reduce_mean(X_recons, axis=axis)
err = tf.math.squared_difference(x_r, x_c_r)
loss = tf.reduce_sum(err)
return loss
# overall
err = tf.math.squared_difference(X, X_recons)
reconst_loss = tf.reduce_sum(err)
reconst_loss += get_reconst_loss_by_axis(X, X_recons, axis=[2]) # by time axis
# reconst_loss += get_reconst_loss_by_axis(X, X_recons, axis=[1]) # by feature axis
return reconst_loss
def train_step(self, X):
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(X)
reconstruction = self.decoder(z)
reconstruction_loss = self._get_reconstruction_loss(X, reconstruction)
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_sum(tf.reduce_sum(kl_loss, axis=1))
# kl_loss = kl_loss / self.latent_dim
total_loss = self.reconstruction_wt * reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)
return {
"loss": self.total_loss_tracker.result(),
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
"kl_loss": self.kl_loss_tracker.result(),
}
def test_step(self, X):
z_mean, z_log_var, z = self.encoder(X)
reconstruction = self.decoder(z)
reconstruction_loss = self._get_reconstruction_loss(X, reconstruction)
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_sum(tf.reduce_sum(kl_loss, axis=1))
# kl_loss = kl_loss / self.latent_dim
total_loss = self.reconstruction_wt * reconstruction_loss + kl_loss
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)
return {
"loss": self.total_loss_tracker.result(),
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
"kl_loss": self.kl_loss_tracker.result(),
}
def save_weights(self, model_dir, file_pref):
encoder_wts = self.encoder.get_weights()
decoder_wts = self.decoder.get_weights()
joblib.dump(encoder_wts, os.path.join(model_dir, f'{file_pref}encoder_wts.h5'))
joblib.dump(decoder_wts, os.path.join(model_dir, f'{file_pref}decoder_wts.h5'))
def load_weights(self, model_dir, file_pref):
encoder_wts = joblib.load(os.path.join(model_dir, f'{file_pref}encoder_wts.h5'))
decoder_wts = joblib.load(os.path.join(model_dir, f'{file_pref}decoder_wts.h5'))
self.encoder.set_weights(encoder_wts)
self.decoder.set_weights(decoder_wts)
def save(self, model_dir, file_pref):
self.save_weights(model_dir, file_pref)
dict_params = {
'seq_len': self.seq_len,
'feat_dim': self.feat_dim,
'latent_dim': self.latent_dim,
'reconstruction_wt': self.reconstruction_wt,
'hidden_layer_sizes': self.hidden_layer_sizes,
}
params_file = os.path.join(model_dir, f'{file_pref}parameters.pkl')
joblib.dump(dict_params, params_file)
class TimeVAE(BaseVariationalAutoencoder):
def __init__(self, hidden_layer_sizes, trend_poly=0, num_gen_seas=0, custom_seas=None,
use_scaler=False, use_residual_conn=True, **kwargs):
'''
hidden_layer_sizes: list of number of filters in convolutional layers in encoder and residual connection of decoder.
trend_poly: integer for number of orders for trend component. e.g. setting trend_poly = 2 will include linear and quadratic term.
num_gen_seas: Number of sine-waves to use to model seasonalities. Each sine wae will have its own amplitude, frequency and phase.
custom_seas: list of tuples of (num_seasons, len_per_season).
num_seasons: number of seasons per cycle.
len_per_season: number of epochs (time-steps) per season.
use_residual_conn: boolean value indicating whether to use a residual connection for reconstruction in addition to
trend, generic and custom seasonalities.
'''
super(TimeVAE, self).__init__(**kwargs)
self.hidden_layer_sizes = hidden_layer_sizes
self.trend_poly = trend_poly
self.num_gen_seas = num_gen_seas
self.custom_seas = custom_seas
self.use_scaler = use_scaler
self.use_residual_conn = use_residual_conn
self.encoder = self._get_encoder()
self.decoder = self._get_decoder()
def _get_encoder(self):
encoder_inputs = Input(shape=(self.seq_len, self.feat_dim), name='encoder_input')
x = encoder_inputs
for i, num_filters in enumerate(self.hidden_layer_sizes):
x = Conv1D(
filters=num_filters,
kernel_size=3,
strides=2,
activation='relu',
padding='same',
name=f'enc_conv_{i}')(x)
x = Flatten(name='enc_flatten')(x)
# save the dimensionality of this last dense layer before the hidden state layer. We need it in the decoder.
self.encoder_last_dense_dim = x.get_shape()[-1]
z_mean = Dense(self.latent_dim, name="z_mean")(x)
z_log_var = Dense(self.latent_dim, name="z_log_var")(x)
encoder_output = Sampling()([z_mean, z_log_var])
self.encoder_output = encoder_output
encoder = Model(encoder_inputs, [z_mean, z_log_var, encoder_output], name="encoder")
return encoder
def _get_decoder(self):
decoder_inputs = Input(shape=(int(self.latent_dim)), name='decoder_input')
outputs = None
outputs = self.level_model(decoder_inputs)
# trend polynomials
if self.trend_poly is not None and self.trend_poly > 0:
trend_vals = self.trend_model(decoder_inputs)
outputs = trend_vals if outputs is None else outputs + trend_vals
# # generic seasonalities
# if self.num_gen_seas is not None and self.num_gen_seas > 0:
# gen_seas_vals, freq, phase, amplitude = self.generic_seasonal_model(decoder_inputs)
# # gen_seas_vals = self.generic_seasonal_model2(decoder_inputs)
# outputs = gen_seas_vals if outputs is None else outputs + gen_seas_vals
# custom seasons
if self.custom_seas is not None and len(self.custom_seas) > 0:
cust_seas_vals = self.custom_seasonal_model(decoder_inputs)
outputs = cust_seas_vals if outputs is None else outputs + cust_seas_vals
if self.use_residual_conn:
residuals = self._get_decoder_residual(decoder_inputs)
outputs = residuals if outputs is None else outputs + residuals
if self.use_scaler and outputs is not None:
scale = self.scale_model(decoder_inputs)
outputs *= scale
# outputs = Activation(activation='sigmoid')(outputs)
if outputs is None:
raise Exception('''Error: No decoder model to use.
You must use one or more of:
trend, generic seasonality(ies), custom seasonality(ies), and/or residual connection. ''')
decoder = Model(decoder_inputs, [outputs], name="decoder")
return decoder
def level_model(self, z):
level_params = Dense(self.feat_dim, name="level_params", activation='relu')(z)
level_params = Dense(self.feat_dim, name="level_params2")(level_params)
level_params = Reshape(target_shape=(1, self.feat_dim))(level_params) # shape: (N, 1, D)
ones_tensor = tf.ones(shape=[1, self.seq_len, 1], dtype=tf.float32) # shape: (1, T, D)
level_vals = level_params * ones_tensor
return level_vals
def scale_model(self, z):
scale_params = Dense(self.feat_dim, name="scale_params", activation='relu')(z)
scale_params = Dense(self.feat_dim, name="scale_params2")(scale_params)
scale_params = Reshape(target_shape=(1, self.feat_dim))(scale_params) # shape: (N, 1, D)
scale_vals = tf.repeat(scale_params, repeats=self.seq_len, axis=1) # shape: (N, T, D)
return scale_vals
def trend_model(self, z):
trend_params = Dense(self.feat_dim * self.trend_poly, name="trend_params", activation='relu')(z)
trend_params = Dense(self.feat_dim * self.trend_poly, name="trend_params2")(trend_params)
trend_params = Reshape(target_shape=(self.feat_dim, self.trend_poly))(trend_params) # shape: N x D x P
lin_space = K.arange(0, float(self.seq_len), 1) / self.seq_len # shape of lin_space : 1d tensor of length T
poly_space = K.stack([lin_space ** float(p + 1) for p in range(self.trend_poly)], axis=0) # shape: P x T
trend_vals = K.dot(trend_params, poly_space) # shape (N, D, T)
trend_vals = tf.transpose(trend_vals, perm=[0, 2, 1]) # shape: (N, T, D)
trend_vals = K.cast(trend_vals, tf.float32)
return trend_vals
def custom_seasonal_model(self, z):
N = tf.shape(z)[0]
ones_tensor = tf.ones(shape=[N, self.feat_dim, self.seq_len], dtype=tf.int32)
all_seas_vals = []
for i, season_tup in enumerate(self.custom_seas):
num_seasons, len_per_season = season_tup
season_params = Dense(self.feat_dim * num_seasons, name=f"season_params_{i}")(z) # shape: (N, D * S)
season_params = Reshape(target_shape=(self.feat_dim, num_seasons))(season_params) # shape: (N, D, S)
season_indexes_over_time = self._get_season_indexes_over_seq(num_seasons, len_per_season) # shape: (T, )
dim2_idxes = ones_tensor * tf.reshape(season_indexes_over_time, shape=(1, 1, -1)) # shape: (1, 1, T)
season_vals = tf.gather(season_params, dim2_idxes, batch_dims=-1) # shape (N, D, T)
all_seas_vals.append(season_vals)
all_seas_vals = K.stack(all_seas_vals, axis=-1) # shape: (N, D, T, S)
all_seas_vals = tf.reduce_sum(all_seas_vals, axis=-1) # shape (N, D, T)
all_seas_vals = tf.transpose(all_seas_vals, perm=[0, 2, 1]) # shape (N, T, D)
return all_seas_vals
def _get_season_indexes_over_seq(self, num_seasons, len_per_season):
curr_len = 0
season_idx = []
curr_idx = 0
while curr_len < self.seq_len:
reps = len_per_season if curr_len + len_per_season <= self.seq_len else self.seq_len - curr_len
season_idx.extend([curr_idx] * reps)
curr_idx += 1
if curr_idx == num_seasons: curr_idx = 0
curr_len += reps
return season_idx
def generic_seasonal_model(self, z):
freq = Dense(self.feat_dim * self.num_gen_seas, name="g_season_freq", activation='sigmoid')(z)
freq = Reshape(target_shape=(1, self.feat_dim, self.num_gen_seas))(freq) # shape: (N, 1, D, S)
phase = Dense(self.feat_dim * self.num_gen_seas, name="g_season_phase")(z)
phase = Reshape(target_shape=(1, self.feat_dim, self.num_gen_seas))(phase) # shape: (N, 1, D, S)
amplitude = Dense(self.feat_dim * self.num_gen_seas, name="g_season_amplitude")(z)
amplitude = Reshape(target_shape=(1, self.feat_dim, self.num_gen_seas))(amplitude) # shape: (N, 1, D, S)
lin_space = K.arange(0, float(self.seq_len), 1) / self.seq_len # shape of lin_space : 1d tensor of length T
lin_space = tf.reshape(lin_space, shape=(1, self.seq_len, 1, 1)) # shape: 1, T, 1, 1
seas_vals = amplitude * K.sin(2. * np.pi * freq * lin_space + phase) # shape: N, T, D, S
seas_vals = tf.math.reduce_sum(seas_vals, axis=-1) # shape: N, T, D
return seas_vals
def generic_seasonal_model2(self, z):
season_params = Dense(self.feat_dim * self.num_gen_seas, name="g_season_params")(z)
season_params = Reshape(target_shape=(self.feat_dim, self.num_gen_seas))(season_params) # shape: (D, S)
p = self.num_gen_seas
p1, p2 = (p // 2, p // 2) if p % 2 == 0 else (p // 2, p // 2 + 1)
ls = K.arange(0, float(self.seq_len), 1) / self.seq_len # shape of ls : 1d tensor of length T
s1 = K.stack([K.cos(2 * np.pi * i * ls) for i in range(p1)], axis=0)
s2 = K.stack([K.sin(2 * np.pi * i * ls) for i in range(p2)], axis=0)
if p == 1:
s = s2
else:
s = K.concatenate([s1, s2], axis=0)
s = K.cast(s, np.float32)
seas_vals = K.dot(season_params, s, name='g_seasonal_vals')
seas_vals = tf.transpose(seas_vals, perm=[0, 2, 1]) # shape: (N, T, D)
seas_vals = K.cast(seas_vals, np.float32)
print('seas_vals shape', tf.shape(seas_vals))
return seas_vals
def _get_decoder_residual(self, x):
x = Dense(self.encoder_last_dense_dim, name="dec_dense", activation='relu')(x)
x = Reshape(target_shape=(-1, self.hidden_layer_sizes[-1]), name="dec_reshape")(x)
for i, num_filters in enumerate(reversed(self.hidden_layer_sizes[:-1])):
x = Conv1DTranspose(
filters=num_filters,
kernel_size=3,
strides=2,
padding='same',
activation='relu',
name=f'dec_deconv_{i}')(x)
# last de-convolution
x = Conv1DTranspose(
filters=self.feat_dim,
kernel_size=3,
strides=2,
padding='same',
activation='relu',
name=f'dec_deconv__{i + 1}')(x)
x = Flatten(name='dec_flatten')(x)
x = Dense(self.seq_len * self.feat_dim, name="decoder_dense_final")(x)
residuals = Reshape(target_shape=(self.seq_len, self.feat_dim))(x)
return residuals
def save(self, model_dir, file_pref):
super().save_weights(model_dir, file_pref)
dict_params = {
'seq_len': self.seq_len,
'feat_dim': self.feat_dim,
'latent_dim': self.latent_dim,
'reconstruction_wt': self.reconstruction_wt,
'hidden_layer_sizes': self.hidden_layer_sizes,
'trend_poly': self.trend_poly,
'num_gen_seas': self.num_gen_seas,
'custom_seas': self.custom_seas,
'use_scaler': self.use_scaler,
'use_residual_conn': self.use_residual_conn,
}
params_file = os.path.join(model_dir, f'{file_pref}parameters.pkl')
joblib.dump(dict_params, params_file)
@staticmethod
def load(model_dir, file_pref):
params_file = os.path.join(model_dir, f'{file_pref}parameters.pkl')
dict_params = joblib.load(params_file)
vae_model = TimeVAE(**dict_params)
vae_model.load_weights(model_dir, file_pref)
vae_model.compile(optimizer=Adam())
return vae_model |