File size: 6,073 Bytes
c7e10ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import warnings

import mmcv
from mmcv import Config, DictAction
from mmcv.parallel import MMDataParallel

from mmdet.apis import single_gpu_test
from mmdet.datasets import (build_dataloader, build_dataset,
                            replace_ImageToTensor)
from mmdet.utils import compat_cfg


def parse_args():
    parser = argparse.ArgumentParser(
        description='MMDet test (and eval) an ONNX model using ONNXRuntime')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('model', help='Input model file')
    parser.add_argument('--out', help='output result file in pickle format')
    parser.add_argument(
        '--format-only',
        action='store_true',
        help='Format the output results without perform evaluation. It is'
        'useful when you want to format the result to a specific format and '
        'submit it to the test server')
    parser.add_argument(
        '--backend',
        required=True,
        choices=['onnxruntime', 'tensorrt'],
        help='Backend for input model to run. ')
    parser.add_argument(
        '--eval',
        type=str,
        nargs='+',
        help='evaluation metrics, which depends on the dataset, e.g., "bbox",'
        ' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC')
    parser.add_argument('--show', action='store_true', help='show results')
    parser.add_argument(
        '--show-dir', help='directory where painted images will be saved')
    parser.add_argument(
        '--show-score-thr',
        type=float,
        default=0.3,
        help='score threshold (default: 0.3)')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
    parser.add_argument(
        '--eval-options',
        nargs='+',
        action=DictAction,
        help='custom options for evaluation, the key-value pair in xxx=yyy '
        'format will be kwargs for dataset.evaluate() function')

    args = parser.parse_args()
    return args


def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    cfg = compat_cfg(cfg)
    # in case the test dataset is concatenated
    samples_per_gpu = 1
    if isinstance(cfg.data.test, dict):
        cfg.data.test.test_mode = True
        samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1)
        if samples_per_gpu > 1:
            # Replace 'ImageToTensor' to 'DefaultFormatBundle'
            cfg.data.test.pipeline = replace_ImageToTensor(
                cfg.data.test.pipeline)
    elif isinstance(cfg.data.test, list):
        for ds_cfg in cfg.data.test:
            ds_cfg.test_mode = True
        samples_per_gpu = max(
            [ds_cfg.pop('samples_per_gpu', 1) for ds_cfg in cfg.data.test])
        if samples_per_gpu > 1:
            for ds_cfg in cfg.data.test:
                ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline)

    # build the dataloader
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(
        dataset,
        samples_per_gpu=samples_per_gpu,
        workers_per_gpu=cfg.data.workers_per_gpu,
        dist=False,
        shuffle=False)

    if args.backend == 'onnxruntime':
        from mmdet.core.export.model_wrappers import ONNXRuntimeDetector
        model = ONNXRuntimeDetector(
            args.model, class_names=dataset.CLASSES, device_id=0)
    elif args.backend == 'tensorrt':
        from mmdet.core.export.model_wrappers import TensorRTDetector
        model = TensorRTDetector(
            args.model, class_names=dataset.CLASSES, device_id=0)

    model = MMDataParallel(model, device_ids=[0])
    outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
                              args.show_score_thr)

    if args.out:
        print(f'\nwriting results to {args.out}')
        mmcv.dump(outputs, args.out)
    kwargs = {} if args.eval_options is None else args.eval_options
    if args.format_only:
        dataset.format_results(outputs, **kwargs)
    if args.eval:
        eval_kwargs = cfg.get('evaluation', {}).copy()
        # hard-code way to remove EvalHook args
        for key in [
                'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best',
                'rule'
        ]:
            eval_kwargs.pop(key, None)
        eval_kwargs.update(dict(metric=args.eval, **kwargs))
        print(dataset.evaluate(outputs, **eval_kwargs))


if __name__ == '__main__':
    main()

    # Following strings of text style are from colorama package
    bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    red_text, blue_text = '\x1b[31m', '\x1b[34m'
    white_background = '\x1b[107m'

    msg = white_background + bright_style + red_text
    msg += 'DeprecationWarning: This tool will be deprecated in future. '
    msg += blue_text + 'Welcome to use the unified model deployment toolbox '
    msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    msg += reset_style
    warnings.warn(msg)